深度学习03-(图像梯度处理、图像轮廓、图像预处理在AI中的应用)
深度学习03-计算机视觉基本理论2
深度学习03-(计算机视觉基本理论2)
图像梯度处理

什么是图像梯度

模板运算

均值滤波

高斯滤波

中值滤波

边沿检测


锐化


图像轮廓

什么是图像轮廓

查找和绘制轮廓

轮廓拟合

矩形包围框

最小包围圆形

最优拟合椭圆

逼近多边形

综合案例

# 图像校正示例
import cv2
import numpy as np
im = cv2.imread("../data/paper.jpg")
gray = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY)
cv2.imshow('im', im)
# 模糊
blurred = cv2.GaussianBlur(gray, (5, 5), 0)
# 膨胀
dilate = cv2.dilate(blurred,
cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3))) # 根据函数返回kernel
# 检测边沿
edged = cv2.Canny(dilate, # 原始图像
30, 120, # 滞后阈值、模糊度
3) # 孔径大小
# cv2.imshow("edged", edged)
# 轮廓检测
cnts = cv2.findContours(edged.copy(),
cv2.RETR_EXTERNAL, # 只检测外轮廓
cv2.CHAIN_APPROX_SIMPLE) # 只保留该方向的终点坐标
cnts = cnts[1]
docCnt = None
# 绘制轮廓
im_cnt = cv2.drawContours(im, # 绘制图像
cnts, # 轮廓点列表
-1, # 绘制全部轮廓
(0, 0, 255), # 轮廓颜色:红色
2) # 轮廓粗细
cv2.imshow("im_cnt", im_cnt)
# 计算轮廓面积,并排序
if len(cnts) > 0:
cnts = sorted(cnts, # 数据
key=cv2.contourArea, # 排序依据,根据contourArea函数结果排序
reverse=True)
for c in cnts:
peri = cv2.arcLength(c, True) # 计算轮廓周长
approx = cv2.approxPolyDP(c, 0.02 * peri, True) # 轮廓多边形拟合
# 轮廓为4个点表示找到纸张
if len(approx) == 4:
docCnt = approx
break
print(docCnt)
# 用圆圈标记处角点
points = []
for peak in docCnt:
peak = peak[0]
# 绘制圆
cv2.circle(im, # 绘制图像
tuple(peak), 10, # 圆心、半径
(0, 0, 255), 2) # 颜色、粗细
points.append(peak) # 添加到列表
print(points)
cv2.imshow("im_point", im)
# 校正
src = np.float32([points[0], points[1], points[2], points[3]]) # 原来逆时针方向四个点
dst = np.float32([[0, 0], [0, 488], [337, 488], [337, 0]]) # 对应变换后逆时针方向四个点
m = cv2.getPerspectiveTransform(src, dst) # 生成透视变换矩阵
result = cv2.warpPerspective(gray.copy(), m, (337, 488)) # 透视变换
cv2.imshow("result", result) # 显示透视变换结果
cv2.waitKey()
cv2.destroyAllWindows()

图像预处理在AI中的应用

图像数据增强

纯图像技术的缺陷

深度学习03-(图像梯度处理、图像轮廓、图像预处理在AI中的应用)的更多相关文章
- 深度学习tensorflow实战笔记(2)图像转换成tfrecords和读取
1.准备数据 首选将自己的图像数据分类分别放在不同的文件夹下,比如新建data文件夹,data文件夹下分别存放up和low文件夹,up和low文件夹下存放对应的图像数据.也可以把up和low文件夹换成 ...
- 3. OpenCV-Python——图像梯度算法、边缘检测、图像金字塔与轮廓检测、直方图与傅里叶变换
一.图像梯度算法 1.图像梯度-Sobel算子 dst = cv2.Sobel(src, ddepth, dx, dy, ksize) ddepth:图像的深度 dx和dy分别表示水平和竖直方向 ks ...
- [Machine Learning] 深度学习中消失的梯度
好久没有更新blog了,最近抽时间看了Nielsen的<Neural Networks and Deep Learning>感觉小有收获,分享给大家. 了解深度学习的同学可能知道,目前深度 ...
- [Deep Learning] 深度学习中消失的梯度
好久没有更新blog了,最近抽时间看了Nielsen的<Neural Networks and Deep Learning>感觉小有收获,分享给大家. 了解深度学习的同学可能知道,目前深度 ...
- GitHub 上 57 款最流行的开源深度学习项目
转载:https://www.oschina.net/news/79500/57-most-popular-deep-learning-project-at-github GitHub 上 57 款最 ...
- paper 53 :深度学习(转载)
转载来源:http://blog.csdn.net/fengbingchun/article/details/50087005 这篇文章主要是为了对深度学习(DeepLearning)有个初步了解,算 ...
- 30个深度学习库:按Python、C++、Java、JavaScript、R等10种语言分类
30个深度学习库:按Python.C++.Java.JavaScript.R等10种语言分类 包括 Python.C++.Java.JavaScript.R.Haskell等在内的一系列编程语言的深度 ...
- 深度学习系列 Part(3)
这是<GPU学习深度学习>系列文章的第三篇,主要是接着上一讲提到的如何自己构建深度神经网络框架中的功能模块,进一步详细介绍 Tensorflow 中 Keras 工具包提供的几种深度神经网 ...
- 02基于python玩转人工智能最火框架之TensorFlow人工智能&深度学习介绍
人工智能之父麦卡锡给出的定义 构建智能机器,特别是智能计算机程序的科学和工程. 人工智能是一种让计算机程序能够"智能地"思考的方式 思考的模式类似于人类. 什么是智能? 智能的英语 ...
- GitHub 上 57 款最流行的开源深度学习项目【转】
GitHub 上 57 款最流行的开源深度学习项目[转] 2017-02-19 20:09 334人阅读 评论(0) 收藏 举报 分类: deeplearning(28) from: https:// ...
随机推荐
- sql运算符优先级
1.() 2.* / % 3.+正 -负 + - +连接(字符串) 4.= > < >= <= <> != !> !< 5.not 6.and 7.b ...
- 智汇成城 ,创赢未来 | AI+产业峰会智慧城市专场在深成功举办!
11月4日下午,由福田区人才工作局指导,广州英码信息科技有限公司和共达地创新技术(深圳)有限公司联合主办,深圳市人工智能行业协会承办的AI+产业峰会之智慧城市专场活动在深圳市南山区成功举办. &quo ...
- TortoiseGit自动保存用户名和密码
在使用TortoiseGit上传时,会多次提示输入用户名和密码,采用以下方法解决 1.桌面点击右键 -> 选择TortoiseGit -> 点击settings 2.点击选择Git 3.点 ...
- List<dto> 转List<map>
/** * list<DTO> 转 list<Map<String,Object>> * * @param list * @param <T> * @r ...
- Java--接口和抽象类有什么区别
他们都不能实例化对象,都可以包含抽象方法,而且抽象方法必须被继承的类全部实现. 区别: 1.抽象类和接口都不能直接实例化,如果要实例化,抽象类变量必须指向实现所有抽象方法的子类对象,接口变量必须指向实 ...
- P1706 全排列问题(DFS)
全排列问题 题目描述 按照字典序输出自然数1到n所有不重复的排列,即n的全排列,要求所产生的任一数字序列中不允许出现重复的数字. 输入格式 一个整数n 输出格式 由1 ~ n组成的所有不重复的数字序列 ...
- Linux中profile、bashrc、bash_profile之间的区别和联系(转)
/etc/profile:此文件为系统的每个用户设置环境信息,当用户第一次登录时,该文件被执行.并从/etc/profile.d目录的配置文件中搜集shell的设置. 英文描述为: # /etc/pr ...
- 痞子衡嵌入式:MCUXpresso IDE下生成镜像文件的方法及其与IAR,MDK差异
大家好,我是痞子衡,是正经搞技术的痞子.今天痞子衡给大家分享的是MCUXpresso IDE下生成镜像文件的方法及其与IAR,MDK差异. 痞子衡很久以前写过一篇文章 <ARM Cortex-M ...
- Mybatisplus标准数据层CRUD功能
package com.itheima; import com.itheima.dao.UserDao; import com.itheima.domain.User; import org.juni ...
- SpringBoot 整合 Avro 与 Kafka
更多内容,前往IT-BLOG [需求]:生产者发送数据至 kafka 序列化使用 Avro,消费者通过 Avro 进行反序列化,并将数据通过 MyBatisPlus 存入数据库. 一.环境介绍 [1] ...