深度学习03-(图像梯度处理、图像轮廓、图像预处理在AI中的应用)
深度学习03-计算机视觉基本理论2
深度学习03-(计算机视觉基本理论2)
图像梯度处理
什么是图像梯度
模板运算
均值滤波
高斯滤波
中值滤波
边沿检测
锐化
图像轮廓
什么是图像轮廓
查找和绘制轮廓
轮廓拟合
矩形包围框
最小包围圆形
最优拟合椭圆
逼近多边形
综合案例
# 图像校正示例
import cv2
import numpy as np
im = cv2.imread("../data/paper.jpg")
gray = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY)
cv2.imshow('im', im)
# 模糊
blurred = cv2.GaussianBlur(gray, (5, 5), 0)
# 膨胀
dilate = cv2.dilate(blurred,
cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3))) # 根据函数返回kernel
# 检测边沿
edged = cv2.Canny(dilate, # 原始图像
30, 120, # 滞后阈值、模糊度
3) # 孔径大小
# cv2.imshow("edged", edged)
# 轮廓检测
cnts = cv2.findContours(edged.copy(),
cv2.RETR_EXTERNAL, # 只检测外轮廓
cv2.CHAIN_APPROX_SIMPLE) # 只保留该方向的终点坐标
cnts = cnts[1]
docCnt = None
# 绘制轮廓
im_cnt = cv2.drawContours(im, # 绘制图像
cnts, # 轮廓点列表
-1, # 绘制全部轮廓
(0, 0, 255), # 轮廓颜色:红色
2) # 轮廓粗细
cv2.imshow("im_cnt", im_cnt)
# 计算轮廓面积,并排序
if len(cnts) > 0:
cnts = sorted(cnts, # 数据
key=cv2.contourArea, # 排序依据,根据contourArea函数结果排序
reverse=True)
for c in cnts:
peri = cv2.arcLength(c, True) # 计算轮廓周长
approx = cv2.approxPolyDP(c, 0.02 * peri, True) # 轮廓多边形拟合
# 轮廓为4个点表示找到纸张
if len(approx) == 4:
docCnt = approx
break
print(docCnt)
# 用圆圈标记处角点
points = []
for peak in docCnt:
peak = peak[0]
# 绘制圆
cv2.circle(im, # 绘制图像
tuple(peak), 10, # 圆心、半径
(0, 0, 255), 2) # 颜色、粗细
points.append(peak) # 添加到列表
print(points)
cv2.imshow("im_point", im)
# 校正
src = np.float32([points[0], points[1], points[2], points[3]]) # 原来逆时针方向四个点
dst = np.float32([[0, 0], [0, 488], [337, 488], [337, 0]]) # 对应变换后逆时针方向四个点
m = cv2.getPerspectiveTransform(src, dst) # 生成透视变换矩阵
result = cv2.warpPerspective(gray.copy(), m, (337, 488)) # 透视变换
cv2.imshow("result", result) # 显示透视变换结果
cv2.waitKey()
cv2.destroyAllWindows()
图像预处理在AI中的应用
图像数据增强
纯图像技术的缺陷
深度学习03-(图像梯度处理、图像轮廓、图像预处理在AI中的应用)的更多相关文章
- 深度学习tensorflow实战笔记(2)图像转换成tfrecords和读取
1.准备数据 首选将自己的图像数据分类分别放在不同的文件夹下,比如新建data文件夹,data文件夹下分别存放up和low文件夹,up和low文件夹下存放对应的图像数据.也可以把up和low文件夹换成 ...
- 3. OpenCV-Python——图像梯度算法、边缘检测、图像金字塔与轮廓检测、直方图与傅里叶变换
一.图像梯度算法 1.图像梯度-Sobel算子 dst = cv2.Sobel(src, ddepth, dx, dy, ksize) ddepth:图像的深度 dx和dy分别表示水平和竖直方向 ks ...
- [Machine Learning] 深度学习中消失的梯度
好久没有更新blog了,最近抽时间看了Nielsen的<Neural Networks and Deep Learning>感觉小有收获,分享给大家. 了解深度学习的同学可能知道,目前深度 ...
- [Deep Learning] 深度学习中消失的梯度
好久没有更新blog了,最近抽时间看了Nielsen的<Neural Networks and Deep Learning>感觉小有收获,分享给大家. 了解深度学习的同学可能知道,目前深度 ...
- GitHub 上 57 款最流行的开源深度学习项目
转载:https://www.oschina.net/news/79500/57-most-popular-deep-learning-project-at-github GitHub 上 57 款最 ...
- paper 53 :深度学习(转载)
转载来源:http://blog.csdn.net/fengbingchun/article/details/50087005 这篇文章主要是为了对深度学习(DeepLearning)有个初步了解,算 ...
- 30个深度学习库:按Python、C++、Java、JavaScript、R等10种语言分类
30个深度学习库:按Python.C++.Java.JavaScript.R等10种语言分类 包括 Python.C++.Java.JavaScript.R.Haskell等在内的一系列编程语言的深度 ...
- 深度学习系列 Part(3)
这是<GPU学习深度学习>系列文章的第三篇,主要是接着上一讲提到的如何自己构建深度神经网络框架中的功能模块,进一步详细介绍 Tensorflow 中 Keras 工具包提供的几种深度神经网 ...
- 02基于python玩转人工智能最火框架之TensorFlow人工智能&深度学习介绍
人工智能之父麦卡锡给出的定义 构建智能机器,特别是智能计算机程序的科学和工程. 人工智能是一种让计算机程序能够"智能地"思考的方式 思考的模式类似于人类. 什么是智能? 智能的英语 ...
- GitHub 上 57 款最流行的开源深度学习项目【转】
GitHub 上 57 款最流行的开源深度学习项目[转] 2017-02-19 20:09 334人阅读 评论(0) 收藏 举报 分类: deeplearning(28) from: https:// ...
随机推荐
- sql运算符优先级
1.() 2.* / % 3.+正 -负 + - +连接(字符串) 4.= > < >= <= <> != !> !< 5.not 6.and 7.b ...
- 自行封装JDBCUtils
自己封装JDBCUtils package com.javasm.util; import com.javasm.bean.Emp; import com.javasm.constants.JDBCC ...
- ArrayList学习
核心源码 package java.util; import java.util.function.Consumer; import java.util.function.Predicate; imp ...
- UAC的详细讲解(转载)
win32中也有对UAC的操作方法 网址:https://blog.csdn.net/zuishikonghuan/article/details/46965159?locationNum=7& ...
- spring-mvc.xml
<?xml version="1.0" encoding="UTF-8"?><beans xmlns="http://www.spr ...
- mysql 的存储过程
定义不带参数的存储过程 CREATE PROCEDURE s1() BEGINselect * from ecs_admin_action;End call s1; 2.带输入参数的 create P ...
- 论文解读(ToAlign)《ToAlign: Task-oriented Alignment for Unsupervised Domain Adaptation》
论文信息 论文标题:ToAlign: Task-oriented Alignment for Unsupervised Domain Adaptation论文作者:Guoqiang Wei, Cuil ...
- SpringBoot部署到外部Tomcat无法注册到Nacos服务端
事情经过 近期做一个项目投标演示(POC)环境支持,需要集成Nacos服务端.考虑到现有项目中已经有了Nacos相关依赖,那还不简单?新建个服务端,配置几下重启不就搞定了吗?然而事情远没有想得这么简单 ...
- Why WebRTC丨“浅入深出”的工作原理详解
前言 近几年实时音视频通信应用呈现出了大爆发的趋势.在这些实时通信技术的背后,有一项不得不提的技术--WebRTC. 今年 1 月,WebRTC 被 W3C 和 IETF 发布为正式标准.据调研机构 ...
- 【读书笔记】组合计数中的行列式方法 专题4 Routings: the Lindstrm–Gessel–Viennot lemma
书用的是Handbook of Enumerative Combinatorics (Miklos Bona) 目录 专题4-Routings: the Lindstrm–Gessel–Viennot ...