https://pdos.csail.mit.edu/6.S081/2021/labs/fs.html

1. Large files (moderate)

1.1 要求

Modify bmap() so that it implements a doubly-indirect block, in addition to direct blocks and a singly-indirect block. You'll have to have only 11 direct blocks, rather than 12, to make room for your new doubly-indirect block; you're not allowed to change the size of an on-disk inode. The first 11 elements of ip->addrs[] should be direct blocks; the 12th should be a singly-indirect block (just like the current one); the 13th should be your new doubly-indirect block. You are done with this exercise when bigfile writes 65803 blocks and usertests runs successfully:

要求扩大 xv6 中文件大小上限。目前 xv6 文件限制为 268 个块,或 268*BSIZE 字节(在 xv6 中 BSIZE 为 1024)。 因为一个 xv6 inode 包含 12 个“直接”块号和一个“单独间接”块号,这是指一个块最多可以容纳 256 个块号,总共 12+256=268 块。

因此需要更改 xv6 文件系统代码以支持每个 inode 中的“双重间接”块,其中包含 256 个单间接块地址,每个块最多可包含 256 个数据块地址。 结果将是一个文件将能够包含多达 65803 个块,或 256*256+256+11 个块(11 个而不是 12 个,因为我们将为双间接块牺牲一个直接块号)

原来的结构如图下:



修改后的结构应当如下:



可以看到,有点类似多级页表的思路。

1.2 分析

要注意的点如下:

  • 因为 inode.addrs 固定为13 个,因此需要减少一个 DirectBlockDoubly-Indirect 使用
  • bmap 的函数签名如右:bmap(struct inode *ip, uint bn)bn 为 block number。需要注意,当 bn 大于 256 + 11 的时候,需要开始在 Doubly-Indirect 中找到合适的 Direct-Block,可以通过 bn=bn-256-11 去掉偏移,然后 bn/256 得到在第几块 Singly-Indirectbn%256 得到目标块在 Singly-Indirect 中的偏移。
  • 通过 bread 获取 buf 之后,修改 buf 后需要通过 log_write 操作写入更新。

1.3 实现

  • 修改直接块数量,注意需要修改 dinodeinodeaddrs 大小
#define NDOUBLEINDIRECT (NINDIRECT * NINDIRECT)
#define NDIRECT 11
// On-disk inode structure
struct dinode {
short type; // File type
short major; // Major device number (T_DEVICE only)
short minor; // Minor device number (T_DEVICE only)
short nlink; // Number of links to inode in file system
uint size; // Size of file (bytes)
uint addrs[NDIRECT+2]; // Data block addresses
}; // in-memory copy of an inode
struct inode {
uint dev; // Device number
uint inum; // Inode number
int ref; // Reference count
struct sleeplock lock; // protects everything below here
int valid; // inode has been read from disk? short type; // copy of disk inode
short major;
short minor;
short nlink;
uint size;
uint addrs[NDIRECT+2];
};
  • 分配间接块,此处需要注意,只有当用到时才分配块,其次修改块时需要记得 log_write
static uint
bmap(struct inode *ip, uint bn)
{
uint addr, *a;
struct buf *bp, *inbp;
if(bn < (NDIRECT)){
if((addr = ip->addrs[bn]) == 0)
ip->addrs[bn] = addr = balloc(ip->dev);
return addr;
}
bn -= NDIRECT; if(bn < NINDIRECT){
// Load indirect block, allocating if necessary.
if((addr = ip->addrs[NDIRECT]) == 0)
ip->addrs[NDIRECT] = addr = balloc(ip->dev);
bp = bread(ip->dev, addr);
a = (uint*)bp->data;
if((addr = a[bn]) == 0){
a[bn] = addr = balloc(ip->dev);
log_write(bp);
}
brelse(bp);
return addr;
}
bn -= NINDIRECT;
// load doublely-indirect block
if(bn < NDOUBLEINDIRECT){
if((addr = ip->addrs[NDIRECT + 1]) == 0)
ip->addrs[NDIRECT + 1] = addr = balloc(ip->dev); // alloc doublely-indirect block // get indirect block index
inbp = bread(ip->dev, addr);
a = (uint*)(inbp->data); uint in_index = bn / NINDIRECT;
uint bn_index = bn % NINDIRECT; // Load indirect block, allocating if necessary.
if ((addr = a[in_index]) == 0){
a[in_index] = addr = balloc(ip->dev);
log_write(inbp);
}
brelse(inbp); bp = bread(ip->dev, addr);
a = (uint*)bp->data;
if ((addr = a[bn_index]) == 0){
a[bn_index] = addr = balloc(ip->dev);
log_write(bp);
}
brelse(bp);
return addr;
} panic("bmap: out of range");
}
  • 释放块
// Truncate inode (discard contents).
// Caller must hold ip->lock.
void
itrunc(struct inode *ip)
{
int i, j, k;
struct buf *bp, *inbp;
uint *a;
uint *tmp; for(i = 0; i < NDIRECT; i++){
if(ip->addrs[i]){
bfree(ip->dev, ip->addrs[i]);
ip->addrs[i] = 0;
}
} if(ip->addrs[NDIRECT]){
bp = bread(ip->dev, ip->addrs[NDIRECT]);
a = (uint*)bp->data;
for(j = 0; j < NINDIRECT; j++){
if(a[j])
bfree(ip->dev, a[j]);
}
brelse(bp);
bfree(ip->dev, ip->addrs[NDIRECT]);
ip->addrs[NDIRECT] = 0;
} if(ip->addrs[NDIRECT + 1]){
inbp = bread(ip->dev, ip->addrs[NDIRECT + 1]);
a = (uint*)(inbp->data);
for (j = 0; j < NINDIRECT; j++){
if (a[j]) {
bp = bread(ip->dev, a[j]);
tmp = (uint*)bp->data;
for(k = 0; k < NINDIRECT; k++){
if(tmp[k])
bfree(ip->dev, tmp[k]);
}
brelse(bp);
bfree(ip->dev, a[j]);
a[j] = 0;
}
}
brelse(inbp);
bfree(ip->dev, ip->addrs[NDIRECT + 1]);
ip->addrs[NDIRECT + 1] = 0;
} ip->size = 0;
iupdate(ip);
}

2. Symbolic links(moderate)

2.1 要求

You will implement the symlink(char *target, char *path) system call, which creates a new symbolic link at path that refers to file named by target. For further information, see the man page symlink. To test, add symlinktest to the Makefile and run it. Your solution is complete when the tests produce the following output (including usertests succeeding).

实现 symlink 接口,比较简单,与 link 的区别在于,symlink 会创建文件,而 link 接口只是增加目标文件的引用计数,并写入目录。

2.2 分析

实现主要有 2 点:

  • 创建链接文件,通过 sys_symlink 接口创建
  • 访问链接文件,通过 sys_open 访问

2.3 实现

  • 创建文件

inode 结构中增加 char symlinkpath[128];,用于存储目标文件的名字。

uint64 sys_symlink(void)
{
char path[MAXPATH], target[MAXPATH];
struct inode *ip;
if(argstr(0, target, MAXPATH) < 0 || argstr(1, path, MAXPATH) < 0)
return -1; begin_op();
if ((ip = namei(path)) == 0){
ip = create(path, T_SYMLINK, 0, 0);
if (ip == 0){
end_op();
return -1;
}
}else if (ip->type != T_SYMLINK){
end_op();
return -1;
}else{
ilock(ip);
} memset(ip->symlinkpath, 0, MAXPATH);
memmove(ip->symlinkpath, target, sizeof(target));
iunlockput(ip);
end_op();
return 0;
}
  • 访问文件

需要注意如果有 O_NOFOLLOW 的 flag,则直接访问链接文件,而不是访问 inode.symlinkpath 的文件。

其次要注意存在链接文件 链接 链接文件的操作,有点套娃,比如 a->b,b->c,c->a,此时如果没有防范措施会无限套娃,因此根据 hints 加了个递归层次限制。

uint64 sys_open(void)
{
char path[MAXPATH];
int fd, omode;
struct file *f;
struct inode *ip, *symip;
int n; if((n = argstr(0, path, MAXPATH)) < 0 || argint(1, &omode) < 0)
return -1; begin_op(); if(omode & O_CREATE){
ip = create(path, T_FILE, 0, 0);
if(ip == 0){
end_op();
return -1;
}
}
else {
if((ip = namei(path)) == 0){
end_op();
return -1;
}
ilock(ip);
if(ip->type == T_DIR && omode != O_RDONLY){
iunlockput(ip);
end_op();
return -1;
}
} int cnt = 0;
while(ip->type == T_SYMLINK && !(omode & O_NOFOLLOW)){
if (cnt >= 10) {
iunlockput(ip);
end_op();
return -1;
} symip = namei(ip->symlinkpath);
if (symip) {
cnt++;
iunlockput(ip);
ip = symip;
ilock(ip);
}
else {
break;
}
} if (cnt == 0 && ip->type == T_SYMLINK && !(omode & O_NOFOLLOW)){
iunlockput(ip);
end_op();
return -1;
} if(ip->type == T_DEVICE && (ip->major < 0 || ip->major >= NDEV)){
iunlockput(ip);
end_op();
return -1;
} if((f = filealloc()) == 0 || (fd = fdalloc(f)) < 0){
if(f)
fileclose(f);
iunlockput(ip);
end_op();
return -1;
} if(ip->type == T_DEVICE){
f->type = FD_DEVICE;
f->major = ip->major;
} else {
f->type = FD_INODE;
f->off = 0;
}
f->ip = ip;
f->readable = !(omode & O_WRONLY);
f->writable = (omode & O_WRONLY) || (omode & O_RDWR); if((omode & O_TRUNC) && ip->type == T_FILE){
itrunc(ip);
} iunlock(ip);
end_op(); return fd;
}

9. Lab: file system的更多相关文章

  1. MIT 6.S081 Lab File System

    前言 打开自己的blog一看,居然三个月没更新了...回想一下前几个月,开题 + 实验室杂活貌似也没占非常多的时间,还是自己太懈怠了吧,掉线城和文明6真的是时间刹手( 不过好消息是把15445的所有l ...

  2. RH133读书 笔记(4) - Lab 4 System Services

    Lab 4 System Services Goal: Develop skills using system administration tools and setting up and admi ...

  3. RH253读书笔记(1)-Lab 1 System Monitoring

    Lab 1 System Monitoring Goal: To build skills to better assess system resources, performance and sec ...

  4. RH133读书笔记(11)-Lab 11 System Rescue and Troubleshooting

    Lab 11 System Rescue and Troubleshooting Goal: To build skills in system rescue procedures. Estimate ...

  5. MIT-6.828-JOS-lab5:File system, Spawn and Shell

    Lab 5: File system, Spawn and Shell tags: mit-6.828 os 概述 本lab将实现JOS的文件系统,只要包括如下四部分: 引入一个文件系统进程(FS进程 ...

  6. Can Microsoft’s exFAT file system bridge the gap between OSes?

    转自:http://arstechnica.com/information-technology/2013/06/review-is-microsofts-new-data-sharing-syste ...

  7. File System Design Case Studies

    SRC=http://www.cs.rutgers.edu/~pxk/416/notes/13-fs-studies.html Paul Krzyzanowski April 24, 2014 Int ...

  8. MIT6.828 La5 File system, Spawn and Shell

    Lab 5: File system, Spawn and Shell 1. File system preliminaries 在lab中我们要使用的文件系统比大多数"真实"文件 ...

  9. Design and Implementation of the Sun Network File System

    Introduction The network file system(NFS) is a client/service application that provides shared file ...

随机推荐

  1. JDBC学习一---JDBC入门

    原文链接 今天开始会写一系列 Java 后端学习的笔记,一方面是为了以后翻阅查看,更主要的原因是通过写作输出的方式让自己的印象更深,避免遗忘. 首先是简单记录下自己学习使用 JDBC 的历程,由于目前 ...

  2. 拉格朗日插值法--python

    数据插补 常见插补方法 插值法--拉格朗日插值法 根据数学知识可知,对于平面上已知的n个点(无两点在一条直线上可以找到n-1次多项式 ,使次多项式曲线过这n个点. 1)求已知过n个点的n-1次多项式: ...

  3. Mybatis工具类(自动提交事务)

    public class MybatisUtils { private static SqlSessionFactory sqlSessionFactory; static { try { //获取工 ...

  4. ArcMap操作随记(10)

    1.基于点生成辐射线 [缓冲区]→[构造视线] 2.求算点集中于剩余点距离总和最小的点 [构造视线]→[计算几何]→[汇总] 3.关于空间参考,关于投影 ①横轴墨卡托投影 "等角横轴切圆柱投 ...

  5. 《前端运维》一、Linux基础--05Shell运算符

    今天我们来学习下Shell运算符,Shell跟其他的编程语言一样,也支持多种运算符,包括: 算数运算符 关系运算符 布尔运算符 字符串运算符 文件测试运算符 那下面,我们就一一来学习一下这些运算符. ...

  6. [Java编程思想] 第一章 对象导论

    第一章 对象导论 "我们之所以将自然界分解,组织成各种概念,并按其含义分类,主要是因为我们是整个口语交流社会共同遵守的协定的参与者,这个协定以语言的形式固定下来--除非赞成这个协定中规定的有 ...

  7. mac安装git

    https://blog.csdn.net/shaock2018/article/details/91127607 继续报错 rm -rf /usr/local/Homebrew/Library/Ta ...

  8. 什么是springcloud?springcloud断路器的作用是什么?springcloud的核心组件有什么?

    一.什么是springcloud 1.springcloud概述 Spring Cloud是一个微服务框架,相比Dubbo等RPC框架, Spring Cloud提供的全套的分布式系统解决方案. Sp ...

  9. 一个".java"源文件中是否可以包括多个类(不是内部类)?有什么限制?

    可以有多个类,但只能有一个public的类,并且public的类名必须与文件的主文件名相同. 包含多个类的Java源文件编译之后会生成多个.class文件.

  10. Dubbo 配置文件是如何加载到 Spring 中的?

    Spring 容器在启动的时候,会读取到 Spring 默认的一些 schema 以及 Dubbo 自 定义的 schema,每个 schema 都会对应一个自己的 NamespaceHandler, ...