不多说,直接上干货!

  一切来源于官网

http://kafka.apache.org/documentation/

Topics and Logs

话题和日志 (Topic和Log)

Let's first dive into the core abstraction Kafka provides for a stream of records—the topic.

让我们更深入的了解Kafka中的Topic。

  A topic is a category or feed name to which records are published. Topics in Kafka are always multi-subscriber; that is, a topic can have zero, one, or many consumers that subscribe to the data written to it.

  For each topic, the Kafka cluster maintains a partitioned log that looks like this:

Topic是发布的消息的类别或者种子Feed名。对于每一个Topic,Kafka集群维护这一个分区的log,就像下图中的示例:

                  

  Each partition is an ordered, immutable sequence of records that is continually appended to—a structured commit log. The records in the partitions are each assigned a sequential id number called the offset that uniquely identifies each record within the partition.

每一个分区都是一个顺序的、不可变的消息队列, 并且可以持续的添加。分区中的消息都被分了一个序列号,称之为偏移量(offset),在每个分区中此偏移量都是唯一的。

  The Kafka cluster retains all published records—whether or not they have been consumed—using a configurable retention period. For example, if the retention policy is set to two days, then for the two days after a record is published, it is available for consumption, after which it will be discarded to free up space. Kafka's performance is effectively constant with respect to data size so storing data for a long time is not a problem.

 Kafka集群保持所有的消息,直到它们过期, 无论消息是否被消费了。 实际上消费者所持有的仅有的元数据就是这个偏移量,也就是消费者在这个log中的位置。
 这个偏移量由消费者控制:正常情况当消费者消费消息的时候,偏移量也线性的的增加。
 但是实际偏移量由消费者控制,消费者可以将偏移量重置为更老的一个偏移量,重新读取消息。
 可以看到这种设计对消费者来说操作自如, 一个消费者的操作不会影响其它消费者对此log的处理。
 再说说分区。Kafka中采用分区的设计有几个目的。一是可以处理更多的消息,不受单台服务器的限制。
 Topic拥有多个分区意味着它可以不受限的处理更多的数据。第二,分区可以作为并行处理的单元,稍后会谈到这一点。

              

  In fact, the only metadata retained on a per-consumer basis is the offset or position of that consumer in the log. This offset is controlled by the consumer: normally a consumer will advance its offset linearly as it reads records, but, in fact, since the position is controlled by the consumer it can consume records in any order it likes. For example a consumer can reset to an older offset to reprocess data from the past or skip ahead to the most recent record and start consuming from "now".

  This combination of features means that Kafka consumers are very cheap—they can come and go without much impact on the cluster or on other consumers. For example, you can use our command line tools to "tail" the contents of any topic without changing what is consumed by any existing consumers.

  The partitions in the log serve several purposes. First, they allow the log to scale beyond a size that will fit on a single server. Each individual partition must fit on the servers that host it, but a topic may have many partitions so it can handle an arbitrary amount of data. Second they act as the unit of parallelism—more on that in a bit.

1.1 Introduction中 Topics and Logs官网剖析(博主推荐)的更多相关文章

  1. Flume Channel Selectors官网剖析(博主推荐)

    不多说,直接上干货! Flume Sources官网剖析(博主推荐) Flume Channels官网剖析(博主推荐) 一切来源于flume官网 http://flume.apache.org/Flu ...

  2. Flume Channels官网剖析(博主推荐)

    不多说,直接上干货! Flume Sources官网剖析(博主推荐) 一切来源于flume官网 http://flume.apache.org/FlumeUserGuide.html Flume Ch ...

  3. Flume Source官网剖析(博主推荐)

    不多说,直接上干货! 一切来源于flume官网 http://flume.apache.org/FlumeUserGuide.html Flume Sources Avro Source Thrift ...

  4. 1.2 Use Cases中 Website Activity Tracking官网剖析(博主推荐)

    不多说,直接上干货! 一切来源于官网 http://kafka.apache.org/documentation/ Website Activity Tracking 网站活动追踪 The origi ...

  5. Flume Interceptors官网剖析(博主推荐)

    不多说,直接上干货! Flume Sources官网剖析(博主推荐) Flume Channels官网剖析(博主推荐) Flume Channel Selectors官网剖析(博主推荐) Flume ...

  6. Event Serializers官网剖析(博主推荐)

    不多说,直接上干货! Flume Sources官网剖析(博主推荐) Flume Channels官网剖析(博主推荐) Flume Channel Selectors官网剖析(博主推荐) Flume ...

  7. Flume Sink Processors官网剖析(博主推荐)

    不多说,直接上干货! Flume Sources官网剖析(博主推荐) Flume Channels官网剖析(博主推荐) Flume Channel Selectors官网剖析(博主推荐) Flume ...

  8. Flume Sinks官网剖析(博主推荐)

    不多说,直接上干货! Flume Sources官网剖析(博主推荐) Flume Channels官网剖析(博主推荐) Flume Channel Selectors官网剖析(博主推荐) 一切来源于f ...

  9. 怎样取消老毛桃软件赞助商---只需在输入框中输入老毛桃官网网址“laomaotao.org”

    来源:www.laomaotao.org 时间:2015-01-29 在众多网友和赞助商的支持下,迄今为止,老毛桃u盘启动盘制作工具已经推出了多个版本.如果有用户希望取消显示老毛桃软件中的赞助商,那不 ...

随机推荐

  1. Codefroces 849 A,B

    A. Odds and Ends time limit per test 1 second memory limit per test 256 megabytes input standard inp ...

  2. 学习《概率机器人》中英文PDF+Probabilistic Robotics

    研究机器人时,使机器人能够应对环境.传感器.执行机构.内部模型.近似算法等所带来的不确定性是必须面对的问题. <概率机器人>对概率机器人学这一新兴领域进行了全面的介绍.概率机器人学依赖统计 ...

  3. CentOS yum安装mcrypt详细图解教程

    CentOS yum安装mcrypt详细图解教程 在Linux的发行版CentOS 6.3 系统下,LAMP(Linux+Apache+Mysql+php)环境搭建好后发现PHPMyadmin提示 “ ...

  4. 一招制胜---详解分布式系统里session同步

    一招制胜---详解分布式系统里session同步 几周前,有个盆友问老王,说现在有多台服务器,怎么样来解决这些服务器间的session同步问题?老王一下就来精神了,因为在n年以前,老王还在学校和几个同 ...

  5. HDU 2883 kebab

    kebab Time Limit: 1000ms Memory Limit: 32768KB This problem will be judged on HDU. Original ID: 2883 ...

  6. 检查类型是否包含iterator

  7. 开创学习的四核时代-iTOP-4412开发板开源硬件平台

    iTOP-4412开发板如今比較热门的开发板.笔者最近入了一套. 也推荐给初学ARM的朋友学习,4412开发板搭载三星Exynos四核处理器,配备1GB内存,4GB固态硬盘EMMC存储,兼具高速读取与 ...

  8. 负载均衡(LB)具体解释

    二.LB LoadBalance就是把负载均衡分配到集群的各个节点,从而提高总体的吞吐能力.Oracle 10g RAC提供了两种手段来实现负载,其一是通过Connection Balancing.依 ...

  9. Android实现本地图片选择及预览缩放效果仿春雨医生

    在做项目时常常会遇到选择本地图片的需求.曾经都是懒得写直接调用系统方法来选择图片.可是这样并不能实现多选效果.近期又遇到了,所以还是写一个demo好了.以后也方便使用.还是首先来看看效果 显示的图片使 ...

  10. Domino系统从UNIX平台到windows平台的迁移及备份

    单位机房的一台服务机器到折旧期了,换成了新购IBM机器X3950,而且都预装了windows 2003 server 标准版,所以只有把以前在Unix平台下跑的OA系统迁移到新的windows 200 ...