Catalan数(卡特兰数)
Catalan数(卡特兰数)
卡特兰数:规定h(0)=1,而h(1)=1,h(2)=2,h(3)=5,h(4)=14,h(5)=42,h(6)=132,h(7)=429,h(8)=1430,h(9)=4862,h(10)=16796,h(11)=58786,h(12)=208012,h(13)=742900,h(14)=2674440,h(15)=9694845·····················
原理
应用

3、在图书馆一共6个人在排队,3个还《面试宝典》一书,3个在借《面试宝典》一书,图书馆此时没有了面试宝典了,求他们排队的总数?
分析:和上面一题剧院买票时一样的
h(3)=5;所以总数为5*3!*3!=180.
思路:可以这样考虑,首先通过括号化,将P分成两个部分(就相当于分成了两个子问题),然后分别对两个部分进行括号化。比如分成(a1)×(a2×a3.....×an),然后再对(a1)和(a2×a3.....×an)分别括号化;又如分成(a1×a2)×(a3.....×an),然后再对(a1×a2)和(a3.....×an)括号化。
设n个矩阵的括号化方案的种数为f(n),那么问题的解为
f(n) = f(1)*f(n-1) + f(2)*f(n-2) + f(3)*f(n-3) + f(n-1)*f(1)。f(1)*f(n-1)表示分成(a1)×(a2×a3.....×an)两部分,然后分别括号化。
计算开始几项,f(1) = 1, f(2) = 1, f(3) = 2, f(4) = 5。结合递归式,不难发现f(n)等于h(n-1)。

设问题的解f(n),其中n表示顶点数,那么f(n) = f(2)*f(n-1) + f(3)*f(n-2) + ......f(n-2)*f(3) + f(n-1)*f(2)。f(2)*f(n-1)表示三个相邻的顶点构成一个三角形,那么另外两个部分的顶点数分别为2和n-1。
设f(2) = 1,那么f(3) = 1, f(4) = 2, f(5) = 5。结合递推式,不难发现f(n) 等于h(n-2)。
思路:以其中一个点为基点,编号为0,然后按顺时针方向将其他点依次编号。那么与编号为0相连点的编号一定是奇数,否则,这两个编号间含有奇数个点,势必会有个点被孤立,即在一条线段的两侧分别有一个孤立点,从而导致两线段相交。设选中的基点为A,与它连接的点为B,那么A和B将所有点分成两个部分,一部分位于A、B的左边,另一部分位于A、B的右边(详单与把问题划分为左右两个子问题)。然后分别对这两部分求解即可。
设问题的解f(n),那么f(n) = f(0)*f(n-2) + f(2)*f(n-4) + f(4)*f(n-6) + ......f(n-4)*f(2) + f(n-2)*f(0)。f(0)*f(n-2)表示编号0的点与编号1的点相连,此时位于它们右边的点的个数为0,而位于它们左边的点为2n-2。依次类推。
f(0) = 1, f(2) = 1, f(4) = 2。结合递归式,不难发现f(2n) 等于h(n)。
9、圆桌周围有 2n个人,他们两两握手,但没有交叉的方案数为h(n)
和上一题是一样的,都是圆上,都没有交叉。都是分成左右两个子问题来分析。
10、n*n的方格地图中,从一个角到另外一个角,不跨越对角线的路径数为h(n).
例如, 4×4方格地图中的路径有:

11、n个节点构成的二叉树,共有多少种情形?
和上一题是一样的,上一题是分为左右两个子问题,而这一题是二叉树,分成左孩子和右孩子两个子问题就好了。
思路:可以这样考虑,根肯定会占用一个结点,那么剩余的n-1个结点可以有如下的分配方式,T(0, n-1),T(1, n-2),...T(n-1, 0),设T(i, j)表示根的左子树含i个结点,右子树含j个结点。
设问题的解为f(n),那么f(n) = f(0)*f(n-1) + f(1)*f(n-2) + .......+ f(n-2)*f(1) + f(n-1)*f(0)。假设f(0) = 1,那么f(1) = 1, f(2) = 2, f(3) = 5。结合递推式,不难发现f(n)等于h(n)。
12、拥有 n+1 个叶子节点的二叉树的数量为h(n).
例如 4个叶子节点的所有二叉树形态:
参考:
http://buptdtt.blog.51cto.com/2369962/832586
https://baike.baidu.com/item/%E5%8D%A1%E7%89%B9%E5%85%B0%E6%95%B0?fr=aladdin
Catalan数(卡特兰数)的更多相关文章
- catalan 数——卡特兰数(转)
Catalan数——卡特兰数 今天阿里淘宝笔试中碰到两道组合数学题,感觉非常亲切,但是笔试中失踪推导不出来后来查了下,原来是Catalan数.悲剧啊,现在整理一下 一.Catalan数的定义令h(1) ...
- (转载)Catalan数——卡特兰数
Catalan数——卡特兰数 今天阿里淘宝笔试中碰到两道组合数学题,感觉非常亲切,但是笔试中失踪推导不出来后来查了下,原来是Catalan数.悲剧啊,现在整理一下 一.Catalan数的定义令h(1) ...
- Catalan Number 卡特兰数
内容部分来自以下博客: Cyberspace_TechNode 邀月独斟 一个大叔 表示感谢! Catalan数的引入: 一个长度为2N的序列,里面有N个+1,N个-1 它的任意前缀和均非负,给定N, ...
- Catalan数——卡特兰数
一.Catalan数的定义 令h(0)=1,h(1)=1,Catalan数满足递归式:h(n) = h(0)*h(n-1) + h(1)*h(n-2) + ... + h(n-1)*h(0) (n& ...
- 浅谈 Catalan number——卡特兰数
一.定义: 卡特兰数是一组满足下面递推关系的数列: 二.变形: 首先,设h(n)为Catalan数的第n+1项,令h(0)=1,h(1)=1,Catalan数满足递推式: h(n)= h(0)*h(n ...
- 洛谷 p1044 栈 【Catalan(卡特兰数)】【经典题】
题目链接:https://www.luogu.org/problemnew/show/P1044 转载于:https://www.luogu.org/blog/QiXingZhi/solution-p ...
- 转载 - Catalan数(卡特兰数)
出处:http://blog.sina.com.cn/s/blog_6aefe4250101asv5.html 什么是Catalan数 说到Catalan数,就不得不提及Catalan序列,Catal ...
- 卡特兰数 catalan number
作者:阿凡卢 出处:http://www.cnblogs.com/luxiaoxun/ 本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接,否则保留 ...
- HDU 1023 Traning Problem (2) 高精度卡特兰数
Train Problem II Time Limit: 1000MS Memory Limit: 32768KB 64bit IO Format: %I64d & %I64u Sub ...
- HDU 1023 Train Problem II (大数卡特兰数)
Train Problem II Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) ...
随机推荐
- python 求一个文件中每个字符出现的次数
import pprint import collections filename = input('Input filename') with open(filename) as info: cou ...
- Python语言之数据结构1(序列--列表,元组,字符串)
0.序列 列表,元组,字符串都是序列. 序列有两个特点:索引操作符和切片操作符.索引操作符让我们可以从序列中抓取一个特定项目.切片操作符让我们能够获取序列的一个切片,即一部分序列. 以字符串为例: 1 ...
- RAID技术简单分析
RAID技术解析 RAID:独立磁盘冗余阵列(Redundant Array of Independent Disks) RAID技术就是将许多块硬盘设备组合成一个容量更大.更安全的硬盘组,可以将数据 ...
- DECLARE_DYNAMIC
DECLARE_DYNAMIC(class_name) DECLARE_DYNCREATE 包含了DECLARE_DYNAMIC的功能,并且可以在运行过程中动态创建对象.如果需要动态创建类对象,需要使 ...
- httpd-vhosts.conf
## VirtualHost example:# Almost any Apache directive may go into a VirtualHost container.# The first ...
- vc++6.0创建console32之.c的应用程序详解
文件-->新建-->win32-->取一个名字,确定 文件-->新建-->c++Source-->取一个名字,记住以.c为后缀,确定 编写简单的程序调试
- 10.多shard场景下relevence score可能不准确
主要知识点 多shard场景下relevence score可能不准确的原因 多shard场景下relevence score可能不准确解决方式 一.多shard场景下relevance sc ...
- pandas - 案例(股票分析)
需求: 使用tushare包获取某股票的历史行情数据. 输出该股票所有收盘比开盘上涨3%以上的日期. 输出该股票所有开盘比前日收盘跌幅超过2%的日期. 假如我从2010年1月1日开始,每月第一个交易日 ...
- hdu2005 第几天?【C++】
第几天? Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submis ...
- scrapy——8 scrapyd使用
scrapy——8 scrapyd使用 什么是scrapyd 怎么安装scrapyd 如何使用scrapyd--运行scrapyd 如何使用scrapyd--配置scrapy.cfg 如何使用s ...