Description

Let x and y be two strings over some finite alphabet A. We would like to transform
x into y allowing only operations given below:

  • Deletion: a letter in x is missing in y at a corresponding position.
  • Insertion: a letter in y is missing in x at a corresponding position.
  • Change: letters at corresponding positions are distinct

Certainly, we would like to minimize the number of all possible operations.

Illustration

A G T A A G T * A G G C
| | | | | | | A G T * C * T G A C G C

Deletion: * in the bottom line

Insertion: * in the top line

Change: when the letters at the top and bottom are distinct

This tells us that to transform x = AGTCTGACGC into y = AGTAAGTAGGC we would be required to perform 5 operations (2 changes, 2 deletions and 1 insertion). If we want to minimize the number operations, we should do it like

A  G  T  A  A  G  T  A  G  G  C
| | | | | | | A G T C T G * A C G C

and 4 moves would be required (3 changes and 1 deletion).

In this problem we would always consider strings x and y to be fixed, such that the number of letters in
x is m and the number of letters in y is n where
nm.

Assign 1 as the cost of an operation performed. Otherwise, assign 0 if there is no operation performed.

Write a program that would minimize the number of possible operations to transform any string
x into a string y.

Input

The input consists of the strings x and y prefixed by their respective lengths, which are within 1000.

Output

An integer representing the minimum number of possible operations to transform any string
x into a string y.

Sample Input

10 AGTCTGACGC
11 AGTAAGTAGGC

Sample Output

4
题意:
求由字符串s1,通过下列三种操作:
1.插入一个字符
2.删除一个字符
3.改变一个字符
变换的字符s2所须要 的最小操作次数。
思路:这是一个求编辑最短距离问题。利用动态规划,列出状态方程,设dp[i][j]表示字符串x[1...i]和字符串y[1...j]的最短编辑距离当x[i] == y[j]时,i和j不须要编辑,要么删除,要么插入。要么替换dp[i][j] = min(dp[i-1][j-1], dp[i-1][j] + 1, dp[i][j - 1] + 1)当x[i] != y[i]时, i和j不须要编辑dp[i][j] = min(dp[i-1][j-1] + 1, dp[i-1][j] + 1, dp[i][j-1]
+ 1);注意初始化dp[i][0] = dp[0][i] = i;
代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int maxn = 1010;
char strx[maxn], stry[maxn];
int lenx, leny, dp[maxn][maxn];
int main()
{ while( scanf("%d %s", &lenx, strx + 1) != EOF)
{
scanf("%d %s", &leny, stry + 1);
int maxv = max(lenx, leny);
dp[0][0] = 0;
for(int i = 1; i <= maxv; i++)
dp[0][i] = dp[i][0] = i;
for(int i = 1; i <= lenx; i++)
{
for(int j = 1; j <= leny; j++)
{
dp[i][j] = min(dp[i-1][j] + 1, dp[i][j-1] + 1);
if(strx[i] == stry[j])
dp[i][j] = min(dp[i][j], dp[i-1][j-1]);
else
dp[i][j] = min(dp[i][j], dp[i-1][j-1] + 1);
}
}
printf("%d\n", dp[lenx][leny]);
} return 0;
}


poj 3356的更多相关文章

  1. POJ 3356(最短编辑距离问题)

    POJ - 3356 AGTC Time Limit: 1000MS   Memory Limit: 65536KB   64bit IO Format: %I64d & %I64u Desc ...

  2. POJ 3356 AGTC(最小编辑距离)

    POJ 3356 AGTC(最小编辑距离) http://poj.org/problem?id=3356 题意: 给出两个字符串x 与 y,当中x的长度为n,y的长度为m,而且m>=n.然后y能 ...

  3. POJ 3356.AGTC

    问题简述: 输入两个序列x和y,分别执行下列三个步骤,将序列x转化为y (1)插入:(2)删除:(3)替换: 要求输出最小操作数. 原题链接:http://poj.org/problem?id=335 ...

  4. poj 3356 AGTC(线性dp)

    题目链接:http://poj.org/problem?id=3356 思路分析:题目为经典的编辑距离问题,其实质为动态规划问题: 编辑距离问题定义:给定一个字符串source,可以对其进行复制,替换 ...

  5. POJ 3356 水LCS

    题目链接: http://poj.org/problem?id=3356 AGTC Time Limit: 1000MS   Memory Limit: 65536K Total Submission ...

  6. POJ 3356 AGTC(DP-最小编辑距离)

    Description Let x and y be two strings over some finite alphabet A. We would like to transform x int ...

  7. POJ 3356 AGTC(最长公共子)

    AGTC Description Let x and y be two strings over some finite alphabet A. We would like to transform  ...

  8. POJ 3356 AGTC(DP求字符串编辑距离)

    给出两个长度小于1000的字符串,有三种操作,插入一个字符,删除一个字符,替换一个字符. 问A变成B所需的最少操作数(即编辑距离) 考虑DP,可以用反证法证明依次从头到尾对A,B进行匹配是不会影响答案 ...

  9. Poj 3356 ACGT(LCS 或 带备忘的递归)

    题意:把一个字符串通过增.删.改三种操作变成另外一个字符串,求最少的操作数. 分析: 可以用LCS求出最大公共子序列,再把两个串中更长的那一串中不是公共子序列的部分删除. 分析可知两个字符串的距离肯定 ...

随机推荐

  1. hdoj--1151--Air Raid(最大独立集)

    Air Raid Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total S ...

  2. Spring SSM 框架

    IDEA 整合 SSM 框架学习 http://www.cnblogs.com/wmyskxz/p/8916365.html 认识 Spring 框架 更多详情请点击这里:这里 Spring 框架是 ...

  3. 12) 十分钟学会android--APP通信传递消息之简单数据传输

    程序间可以互相通信是Android程序中最棒的功能之一.当一个功能已存在于其他app中,且并不是本程序的核心功能时,完全没有必要重新对其进行编写. 本章节会讲述一些通在不同程序之间通过使用Intent ...

  4. 1350 Taxi Cab Scheme DAG最小路径覆盖

    对于什么是DAG最小路径覆盖以及解题方法在我的另外的博客已经有了.http://www.cnblogs.com/Potato-lover/p/3980470.html 此题的题意: 公交车(出租车)车 ...

  5. Mac Terminal 快捷键

    在Mac系统中并没有Home.End等键,所以在使用时并不是特别的顺手,但是有几个键位组合可以使Terminal的操作更加灵活方便. 1.将光标移动到行首:ctrl + a 2.将光标移动到行尾:ct ...

  6. nodeJs配置相关以及JSON.parse

    nodeJs配置相关 实际上说应用相关更好吧,我不是很懂. 今天在工作中,被同事解决了一个问题,虽然多花了一些额外时间,但长痛不如短痛嘛 实际上的问题就是npm run target等命令可以,但是n ...

  7. java 读取配置文件(nx就转了)

    借鉴别人的 package test; import java.io.FileInputStream; import java.io.FileNotFoundException; import jav ...

  8. 面试官:为什么mysql不建议执行超过3表以上的多表关联查询?

    概述 前段时间在跟其他公司DBA交流时谈到了mysql跟PG之间在多表关联查询上的一些区别,相比之下mysql只有一种表连接类型:嵌套循环连接(nested-loop),不支持排序-合并连接(sort ...

  9. DB2解决死锁

    方法一.查看db2diag.log文件 找到DeadLock or Lock timeout搜索 死锁或锁超时信息db2 force application(句柄ID)直接结束进程即可. 方法二.DB ...

  10. How many integers can you find HDU - 1796_容斥计数

    Code: #include<cstdio> using namespace std; typedef long long ll; const int R=13; ll a[R]; ll ...