time limit per test2 seconds

memory limit per test512 megabytes

inputstandard input

outputstandard output

Mike and !Mike are old childhood rivals, they are opposite in everything they do, except programming. Today they have a problem they cannot solve on their own, but together (with you) — who knows?

Every one of them has an integer sequences a and b of length n. Being given a query of the form of pair of integers (l, r), Mike can instantly tell the value of while !Mike can instantly tell the value of .

Now suppose a robot (you!) asks them all possible different queries of pairs of integers (l, r) (1 ≤ l ≤ r ≤ n) (so he will make exactly n(n + 1) / 2 queries) and counts how many times their answers coincide, thus for how many pairs is satisfied.

How many occasions will the robot count?

Input

The first line contains only integer n (1 ≤ n ≤ 200 000).

The second line contains n integer numbers a1, a2, …, an ( - 109 ≤ ai ≤ 109) — the sequence a.

The third line contains n integer numbers b1, b2, …, bn ( - 109 ≤ bi ≤ 109) — the sequence b.

Output

Print the only integer number — the number of occasions the robot will count, thus for how many pairs is satisfied.

Examples

input

6

1 2 3 2 1 4

6 7 1 2 3 2

output

2

input

3

3 3 3

1 1 1

output

0

Note

The occasions in the first sample case are:

1.l = 4,r = 4 since max{2} = min{2}.

2.l = 4,r = 5 since max{2, 1} = min{2, 3}.

There are no occasions in the second sample case since Mike will answer 3 to any query pair, but !Mike will always answer 1.

【题解】



用ST算法搞(也就是RMQ算法);

这可以搞定任意两个点之间的最大值和最小值。

接着顺序枚举起点i

对于每个起点i,二分枚举它的终点t;

①如果[i..t]这段区间内a的最大值大于b的最小值,则右端点再也不能往右了。因为再往右只会让这个差距越来越大,不能让他们相等。

②如果[i..t]这段区间内a的最大值等于b的最小值,则这是一个可行的右端点。

③如果[i..t]这段区间内a的最大值小于b的最小值,则右端点可以再往右,以逼近max==min(当然也可能不存在);

总之,枚举起点i,然后找到最靠左的满足要求的右端点t1,和最靠右的满足要求的右端点t2,答案对数增加t2-t1+1

这个t1和t2可以用两个二分写出来(分开写)

#include <cstdio>
#include <iostream>
#include <algorithm> using namespace std; const int MAX = 18;
const int MAXN = 209999;
const int INF = 2e9; int dpmax[210000][MAX + 3],dpmin[210000][MAX + 3];
int pre2[MAX + 3];
int a[MAXN], b[MAXN];
int need[MAXN];
int n; void input(int &r)
{
r = 0;
char t = getchar();
while (!isdigit(t) && t!='-') t = getchar();
int sign =1;
if (t == '-') sign = -sign;
while (!isdigit(t)) t = getchar();
while (isdigit(t)) r = r * 10 + t - '0', t = getchar();
r = r*sign;
} int main()
{
//freopen("F:\\rush.txt", "r", stdin);
input(n);
for (int i = 1; i <= n; i++)
input(a[i]), dpmax[i][0] = a[i];
for (int i = 1; i <= n; i++)
input(b[i]), dpmin[i][0] = b[i]; for (int i = 1; i <= n; i++)
for (int j = 1; j <= 18; j++)
dpmin[i][j] = INF,dpmax[i][j]=-INF; pre2[0] = 1;
for (int i = 1; i <= 18; i++)
pre2[i] = pre2[i - 1] << 1; need[1] = 0; need[2] = 1;
int temp = 2;
for (int i = 3; i <= n; i++)//need[i]表示长度为i是2的多少次方,可以理解为[log2i]
if (pre2[temp] == i)
need[i] = need[i - 1] + 1, temp++;
else
need[i] = need[i - 1]; for (int l = 1; pre2[l] <= n; l++)//利用st算法搞出区间最大和最小值
for (int i = 1;i <= n;i++)
if (i + pre2[l] - 1 <= n)
dpmax[i][l] = max(dpmax[i][l - 1], dpmax[i + pre2[l - 1]][l - 1]); for (int l = 1; pre2[l] <= n; l++)
for (int i = 1; i <= n; i++)
if (i + pre2[l] - 1 <= n)
dpmin[i][l] = min(dpmin[i][l - 1], dpmin[i + pre2[l - 1]][l - 1]); long long ans = 0;
for (int i = 1; i <= n; i++){
int l = i, r = n;
//找最左边的
int numl = -1;
while (l <= r){
int m = (l + r) >> 1;
int len = need[m-i+1];
int themax = max(dpmax[i][len], dpmax[m - pre2[len] + 1][len]);
int themin = min(dpmin[i][len], dpmin[m - pre2[len] + 1][len]);
if (themax > themin)
r = m-1;
else
if (themax == themin){
numl = m;
r = m - 1;
}
else
if (themax < themin)
l = m + 1;
} //找最右边的
int numr = -1;
l = i, r = n;
while (l <= r) {
int m = (l + r) >> 1;
int len = need[m - i + 1];
int themax = max(dpmax[i][len], dpmax[m - pre2[len] + 1][len]);
int themin = min(dpmin[i][len], dpmin[m - pre2[len] + 1][len]);
if (themax > themin)
r = m - 1;
else
if (themax == themin) {
numr = m;
l = m + 1;
}
else
if (themax < themin)
l = m + 1;
}
if (numl != -1)
ans += (numr - numl + 1);
}
printf("%I64d\n", ans);
return 0;
}

【22.48%】【codeforces 689D】Friends and Subsequences的更多相关文章

  1. 【 BowWow and the Timetable CodeForces - 1204A 】【思维】

    题目链接 可以发现 十进制4 对应 二进制100 十进制16 对应 二进制10000 十进制64 对应 二进制1000000 可以发现每多两个零,4的次幂就增加1. 用string读入题目给定的二进制 ...

  2. codeforces 689D D. Friends and Subsequences(RMQ+二分)

    题目链接: D. Friends and Subsequences time limit per test 2 seconds memory limit per test 512 megabytes ...

  3. 【32.22%】【codeforces 602B】Approximating a Constant Range

    time limit per test2 seconds memory limit per test256 megabytes inputstandard input outputstandard o ...

  4. 【22.70%】【codeforces 591C】 Median Smoothing

    time limit per test2 seconds memory limit per test256 megabytes inputstandard input outputstandard o ...

  5. 【22.73%】【codeforces 606D】Lazy Student

    time limit per test2 seconds memory limit per test256 megabytes inputstandard input outputstandard o ...

  6. 【codeforces 766E】Mahmoud and a xor trip

    [题目链接]:http://codeforces.com/contest/766/problem/E [题意] 定义树上任意两点之间的距离为这条简单路径上经过的点; 那些点上的权值的所有异或; 求任意 ...

  7. 【codeforces 733F】Drivers Dissatisfaction

    [题目链接]:http://codeforces.com/problemset/problem/733/F [题意] 给你n个点m条边; 让你从中选出n-1条边; 形成一个生成树; (即让n个点都联通 ...

  8. 【codeforces 799D】Field expansion

    [题目链接]:http://codeforces.com/contest/799/problem/D [题意] 给你长方形的两条边h,w; 你每次可以从n个数字中选出一个数字x; 然后把h或w乘上x; ...

  9. 【codeforces 22C】 System Administrator

    [题目链接]:http://codeforces.com/problemset/problem/22/C [题意] 给你n个点; 要求你构造一个含m条边的无向图; 使得任意两点之间都联通; 同时,要求 ...

随机推荐

  1. Traveler Nobita (zoj 3456 最小生成树)

    Traveler Nobita Time Limit: 2 Seconds      Memory Limit: 65536 KB One day, Nobita used a time machin ...

  2. JS学习笔记 - fgm练习 - 多按钮控制同个div属性

    总结: 1. 注意body里的结构安排,全部装在大div,避免多次设置不同部分居中. 2. 一排按钮居中:装在大div里,text-align: center; 3. 把相同的部分封装成函数,即 同个 ...

  3. Scala入门到精通——第十九节 隐式转换与隐式參数(二)

    作者:摇摆少年梦 配套视频地址:http://www.xuetuwuyou.com/course/12 本节主要内容 隐式參数中的隐式转换 函数中隐式參数使用概要 隐式转换问题梳理 1. 隐式參数中的 ...

  4. JSF教程(11)——生命周期之Invoke Application Phase

    在这个阶段JSF实现将处理不论什么应用界别的事件,比如表单的提交或者链接点击后跳转到还有一个页面. 这时假设应用须要重定向不同 的web应用字眼或者产生一个资源其并不喊不论什么的JSF组件,那么就调用 ...

  5. 9.1 Binder系统_C程序示例_框架分析和编写程序

    IPC : Inter-Process Communication, 进程间通信 A进程把数据原原本本的发给B,这就是IPC RPC : Remote Procedure Call, 远程过程调用 A ...

  6. WPF中实现验证码

    原文:WPF中实现验证码 版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.csdn.net/m0_37591671/article/details/79563449 W ...

  7. css3-11 网页如何使用自定义字体

    css3-11 网页如何使用自定义字体 一.总结 一句话总结:下载好字体文件,然后在网页中引入,用src: url('my.otf');来引入,使用的时候就使用自己定义的名字来使用这个字体. 1.网页 ...

  8. C++学习笔记8-操作符&amp;指针

    1.  重载操作符 赋值操作符的返回类型应该与内置类型赋值运算返回的类型同样.内置类型的赋值运算返回对右操作数的引用,因此,赋值操作符也返回对同一类类型的引用.比如.Sales_item的赋值操作符能 ...

  9. mjpg-streamer摄像头远程传输UVC

    mjpg-streamer摄像头远程传输UVC 1 下载源代码 mjpg-streamer的源代码地址  https://github.com/codewithpassion/mjpg-streame ...

  10. 数值优化(Numerical Optimization)学习系列-文件夹

    概述 数值优化对于最优化问题提供了一种迭代算法思路,通过迭代逐渐接近最优解,分别对无约束最优化问题和带约束最优化问题进行求解. 该系列教程能够參考的资料有 1. <Numerical Optim ...