不多说,直接上代码。

  对流量原始日志进行流量统计,将不同省份的用户统计结果输出到不同文件。

代码

package zhouls.bigdata.myMapReduce.flowsum;

import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;

import org.apache.hadoop.io.Writable;
import org.apache.hadoop.io.WritableComparable;

public class FlowBean implements WritableComparable<FlowBean>{

private String phoneNB;
private long up_flow;
private long d_flow;
private long s_flow;

//在反序列化时,反射机制需要调用空参构造函数,所以显示定义了一个空参构造函数
public FlowBean(){}

//为了对象数据的初始化方便,加入一个带参的构造函数
public FlowBean(String phoneNB, long up_flow, long d_flow) {
this.phoneNB = phoneNB;
this.up_flow = up_flow;
this.d_flow = d_flow;
this.s_flow = up_flow + d_flow;
}

public String getPhoneNB() {
return phoneNB;
}

public void setPhoneNB(String phoneNB) {
this.phoneNB = phoneNB;
}

public long getUp_flow() {
return up_flow;
}

public void setUp_flow(long up_flow) {
this.up_flow = up_flow;
}

public long getD_flow() {
return d_flow;
}

public void setD_flow(long d_flow) {
this.d_flow = d_flow;
}

public long getS_flow() {
return s_flow;
}

public void setS_flow(long s_flow) {
this.s_flow = s_flow;
}

//将对象数据序列化到流中
public void write(DataOutput out) throws IOException {

out.writeUTF(phoneNB);
out.writeLong(up_flow);
out.writeLong(d_flow);
out.writeLong(s_flow);

}

//从数据流中反序列出对象的数据
//从数据流中读出对象字段时,必须跟序列化时的顺序保持一致
public void readFields(DataInput in) throws IOException {

phoneNB = in.readUTF();
up_flow = in.readLong();
d_flow = in.readLong();
s_flow = in.readLong();

}

@Override
public String toString() {

return "" + up_flow + "\t" +d_flow + "\t" + s_flow;
}

public int compareTo(FlowBean o) {
return s_flow>o.getS_flow()?-1:1;
}

}

package zhouls.bigdata.myMapReduce.flowsum;

import java.io.IOException;

import org.apache.commons.lang.StringUtils;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

/**
* FlowBean 是我们自定义的一种数据类型,要在hadoop的各个节点之间传输,应该遵循hadoop的序列化机制
* 就必须实现hadoop相应的序列化接口
*
*
*/
public class FlowSumMapper extends Mapper<LongWritable, Text, Text, FlowBean>{

//拿到日志中的一行数据,切分各个字段,抽取出我们需要的字段:手机号,上行流量,下行流量,然后封装成kv发送出去
@Override
protected void map(LongWritable key, Text value,Context context)
throws IOException, InterruptedException {

//拿一行数据
String line = value.toString();
//切分成各个字段
String[] fields = StringUtils.split(line, "\t");

//拿到我们需要的字段
String phoneNB = fields[1];
long u_flow = Long.parseLong(fields[7]);
long d_flow = Long.parseLong(fields[8]);

//封装数据为kv并输出
context.write(new Text(phoneNB), new FlowBean(phoneNB,u_flow,d_flow));

}

}

package zhouls.bigdata.myMapReduce.flowsum;

import java.io.IOException;

import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

public class FlowSumReducer extends Reducer<Text, FlowBean, Text, FlowBean>{

//框架每传递一组数据<1387788654,{flowbean,flowbean,flowbean,flowbean.....}>调用一次我们的reduce方法
//reduce中的业务逻辑就是遍历values,然后进行累加求和再输出
@Override
protected void reduce(Text key, Iterable<FlowBean> values,Context context)
throws IOException, InterruptedException {

long up_flow_counter = 0;
long d_flow_counter = 0;

for(FlowBean bean : values){

up_flow_counter += bean.getUp_flow();
d_flow_counter += bean.getD_flow();

}

context.write(key, new FlowBean(key.toString(), up_flow_counter, d_flow_counter));

}

}

package zhouls.bigdata.myMapReduce.flowsum;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.InputFormat;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.OutputFormat;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;

import zhouls.bigdata.myMapReduce.Anagram.Anagram;

//这是job描述和提交类的规范写法
public class FlowSumRunner extends Configured implements Tool{

public int run(String[] arg0) throws Exception {

Configuration conf = new Configuration();
Job job = Job.getInstance(conf);

job.setJarByClass(FlowSumRunner.class);

job.setMapperClass(FlowSumMapper.class);
job.setReducerClass(FlowSumReducer.class);

job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(FlowBean.class);

job.setOutputKeyClass(Text.class);
job.setOutputValueClass(FlowBean.class);

FileInputFormat.addInputPath(job, new Path(arg0[0]));// 文件输入路径
FileOutputFormat.setOutputPath(job, new Path(arg0[1]));// 文件输出路径
job.waitForCompletion(true);

return 0;
}

public static void main(String[] args) throws Exception {
//集群路径
// String[] args0 = { "hdfs://HadoopMaster:9000/flowSum/HTTP_20130313143750.dat",
// "hdfs://HadoopMaster:9000/out/flowSum"};

//本地路径
String[] args0 = { "./data/flowSum/HTTP_20130313143750.dat",
"./out/flowSum/"};

int ec = ToolRunner.run( new Configuration(), new FlowSumRunner(), args0);
System. exit(ec);
}

}

Hadoop MapReduce编程 API入门系列之网页流量版本1(二十二)的更多相关文章

  1. Hadoop MapReduce编程 API入门系列之网页流量版本1(二十一)

    不多说,直接上代码. 对流量原始日志进行流量统计,将不同省份的用户统计结果输出到不同文件. 代码 package zhouls.bigdata.myMapReduce.areapartition; i ...

  2. Hadoop MapReduce编程 API入门系列之压缩和计数器(三十)

    不多说,直接上代码. Hadoop MapReduce编程 API入门系列之小文件合并(二十九) 生成的结果,作为输入源. 代码 package zhouls.bigdata.myMapReduce. ...

  3. Hadoop MapReduce编程 API入门系列之网页排序(二十八)

    不多说,直接上代码. Map output bytes=247 Map output materialized bytes=275 Input split bytes=139 Combine inpu ...

  4. Hadoop MapReduce编程 API入门系列之挖掘气象数据版本3(九)

    不多说,直接上干货! 下面,是版本1. Hadoop MapReduce编程 API入门系列之挖掘气象数据版本1(一) 下面是版本2. Hadoop MapReduce编程 API入门系列之挖掘气象数 ...

  5. Hadoop MapReduce编程 API入门系列之挖掘气象数据版本2(十)

    下面,是版本1. Hadoop MapReduce编程 API入门系列之挖掘气象数据版本1(一) 这篇博文,包括了,实际生产开发非常重要的,单元测试和调试代码.这里不多赘述,直接送上代码. MRUni ...

  6. Hadoop MapReduce编程 API入门系列之join(二十六)(未完)

    不多说,直接上代码. 天气记录数据库 Station ID Timestamp Temperature 气象站数据库 Station ID Station Name 气象站和天气记录合并之后的示意图如 ...

  7. Hadoop MapReduce编程 API入门系列之MapReduce多种输入格式(十七)

    不多说,直接上代码. 代码 package zhouls.bigdata.myMapReduce.ScoreCount; import java.io.DataInput; import java.i ...

  8. Hadoop MapReduce编程 API入门系列之自定义多种输入格式数据类型和排序多种输出格式(十一)

    推荐 MapReduce分析明星微博数据 http://git.oschina.net/ljc520313/codeexample/tree/master/bigdata/hadoop/mapredu ...

  9. Hadoop MapReduce编程 API入门系列之wordcount版本1(五)

    这个很简单哈,编程的版本很多种. 代码版本1 package zhouls.bigdata.myMapReduce.wordcount5; import java.io.IOException; im ...

随机推荐

  1. Hadoop多节点Cluster

    Hadoop多节点集群规划 服务起名称 内网IP HDFS YARN master 192.168.1.155 NameNode ResourceManager slave1 192.168.1.11 ...

  2. 【技术累积】【点】【java】【19】访问权限

    java中的四种访问权限 范围如下表 权限 类内 同包 不同包子类 不同包非子类 Public ✔️ ✔️ ✔️ ✔️ 默认(Default) ✔️ ✔️ ️ Protected ✔️ ✔️ ✔️ P ...

  3. button提交表单 a标签提交表单

    <form name="searchForm" id="searchForm" method="get" action="/ ...

  4. matlab学习下拉菜单Pop-Up Menu的基本用法

    创建下拉菜单,修改string的属性,tag改为kj1,value值如果是1就显示第一行的sin(x),是几就显示第几行 %可以更改value值var=get(handles.kj1,'value') ...

  5. Scrapy处理200-300范围之外的响应代码

    HttpErrorMiddleware 类scrapy.spidermiddlewares.httperror.HttpErrorMiddleware 过滤掉不成功(错误)的HTTP响应,以便蜘蛛不必 ...

  6. Labview学习笔记(二)

    一.编程基础 LABVIEW程序成为虚拟.仪器程序,简称VI,一个最基本的VI包括三个部分:前面板.程序框图和图标/连接端口. 1.前面板 在前面板窗口中,可以添加输入控件和显示控件,同时,可以用快捷 ...

  7. [tyvj1935 Poetize3]导弹防御塔 (二分图多重匹配)

    传送门 Description Freda控制着N座可以发射导弹的防御塔.每座塔都有足够数量的导弹,但是每座塔每次只能发射一枚.在发射导弹时,导弹需要T1秒才能从防御塔中射出,而在发射导弹后,发射这枚 ...

  8. SBC37x交叉编译平台QT+OPENCV【2】虚拟机Vbox下Ubuntu的磁盘扩容

    虚拟机Vbox下Ubuntu,当初为了学习,仅仅分配了8g,结果qt,opencv等一上,就说room空间不够了.于是开始折腾磁盘扩容. 网上一大堆,也不知道有多少是自己动手走过,正是不但浪费别人时间 ...

  9. elasticsearch实战 中文+拼音搜索

    需求 雪花啤酒  需要搜索雪花.啤酒 .雪花啤酒.xh.pj.xh啤酒.雪花pj ik导入 参考https://www.cnblogs.com/LQBlog/p/10443862.html,不需要修改 ...

  10. C#--Task知识点

    5天玩转C#并行和多线程编程 TASK使用总结 Task是什么,字面意思是任务 表示一个异步操作.它是异步操作的首选方式.Task是FRAMEWORK4中的新特性,封装了以前的Thread,并管理Th ...