题目意思:

给出你一颗带点权的树,dist(i, j)的值为节点i到j的距离乘上节点j的权值,让你任意找一个节点v,使得dist(v, i) (1 < i < n)的和最大。输出最大的值。

题目分析:

首先如果你可以熟悉的使用树形dp的话 , 可以很快的意识的先从1号点开始dfs一遍,然后通过一些奇怪的方式,再dfs一遍得到其他点的贡献。无所以我们需要找到一个递推式是满足我选择其他号码为根时候,可以很快的得到答案 。 现在假设有两个节点v , fa ; v 是 fa 的儿子节点 , 根据dp的性质 与dfs的遍历顺序, 如果已经的遍历到 dp[v] 了 , 那dp[fa] 就一定是最优的答案 , 那显然 有式子 dp[v] = dp[fa]-sum[v]  + sum[1]-sum[v] ;

为什么这样呢?  这个很好想 , 如果v是根的话 ,  sum[1]-sum[v] 就是计算的是(不是v子树)的贡献 , dp[fa]-sum[v] , 应为对dp[fa] 来说 结果已经是有sum[v] 的值了 , 这就是多的部分 ;

以上是自己的奇思妙想;

这篇博客解释的很好呀,大牛来的

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn = * 1e5 + ; ll dp[maxn], sum[maxn], head[maxn];
int n, top;
ll ans;
struct node { //链式前向星存树,可以更换为其他的存储方式
int v, next;
}edge[maxn * ]; inline void add (int u, int v) //建边
{
edge[top].v = v;
edge[top].next = head[u];
head[u] = top++;
} void dfs(int u , int fa) //求出根为1的时候的dp
{
for(int i=head[u] ; i!=- ; i=edge[i].next)
{
int v=edge[i].v;
if(v!=fa)
{
dfs(v,u);
sum[u]+=sum[v];
dp[u] +=sum[v]+dp[v];
}
}
}
void solve(int u , int fa)
{
if(u!=)
dp[u]=dp[fa]-sum[u]+sum[]-sum[u];
for(int i=head[u] ; i!=- ; i=edge[i].next)
{
int v=edge[i].v;
if(v!=fa)
solve(v,u);
}
ans=max(ans,dp[u]);
}
int main()
{
int n;
scanf("%d",&n);
memset(head,-,sizeof(head));
memset(dp,,sizeof(dp));
for(int i= ; i<=n ; i++)
{
scanf("%I64d",&sum[i]);
}
int u,v;
for(int i= ; i<=n- ; i++)
{
scanf("%d%d",&u,&v);
add(u,v);
add(v,u);
}
dfs(,);
solve(,);
printf("%I64d\n",ans);
}

CF F - Tree with Maximum Cost (树形DP)给出你一颗带点权的树,dist(i, j)的值为节点i到j的距离乘上节点j的权值,让你任意找一个节点v,使得dist(v, i) (1 < i < n)的和最大。输出最大的值。的更多相关文章

  1. Codeforces Round #527 F - Tree with Maximum Cost /// 树形DP

    题目大意: 给定一棵树 每个点都有点权 每条边的长度都为1 树上一点到另一点的距离为最短路经过的边的长度总和 树上一点到另一点的花费为距离乘另一点的点权 选定一点出发 使得其他点到该点的花费总和是最大 ...

  2. Codeforces Round #527 (Div. 3) F. Tree with Maximum Cost 【DFS换根 || 树形dp】

    传送门:http://codeforces.com/contest/1092/problem/F F. Tree with Maximum Cost time limit per test 2 sec ...

  3. Codeforces 1092 F Tree with Maximum Cost (换根 + dfs)

    题意: 给你一棵无根树,每个节点有个权值$a_i$,指定一个点u,定义$\displaystyle value = \sum^v a_i*dist(u,v)$,求value的最大值 n,ai<= ...

  4. Codeforces Round #527 (Div. 3) . F Tree with Maximum Cost

    题目链接 题意:给你一棵树,让你找一个顶点iii,使得这个点的∑dis(i,j)∗a[j]\sum dis(i,j)*a[j]∑dis(i,j)∗a[j]最大.dis(i,j)dis(i,j)dis( ...

  5. Codeforces 1092F Tree with Maximum Cost(树形DP)

    题目链接:Tree with Maximum Cost 题意:给定一棵树,树上每个顶点都有属性值ai,树的边权为1,求$\sum\limits_{i = 1}^{n} dist(i, v) \cdot ...

  6. CF1092 --- Tree with Maximum Cost

    CF1324 --- Maximum White Subtree 题干 You are given a tree consisting exactly of \(n\) vertices. Tree ...

  7. Codeforces 835 F Roads in the Kingdom(树形dp)

    F. Roads in the Kingdom(树形dp) 题意: 给一张n个点n条边的无向带权图 定义不便利度为所有点对最短距离中的最大值 求出删一条边之后,保证图还连通时不便利度的最小值 $n & ...

  8. 【HDU 5233】Tree chain problem (树形DP+树剖+线段树|树状数组)最大权不相交树链集

    [题目] Tree chain problem Problem Description Coco has a tree, whose vertices are conveniently labeled ...

  9. Apple Tree POJ - 2486 (树形dp)

    题目链接: D - 树形dp  POJ - 2486 题目大意:一颗树,n个点(1-n),n-1条边,每个点上有一个权值,求从1出发,走V步,最多能遍历到的权值 学习网址:https://blog.c ...

随机推荐

  1. Eclipse右击jsp没有运行选项

    maven项目低级错误,没有更新maven资源库.....更新后就运行起来了

  2. 如何学习MySQL

    转自高手的帖子 1.坚持阅读官方手册,看MySQL书籍作用不会特别大:(挑选跟工作相关的内容优先阅读,例如InnoDB存储引擎,MySQL复制,查询优化) 2.阅读官方手册,同时对阅读的内容做对应的测 ...

  3. 面试题: java多线程 背1

    如果对什么是线程.什么是进程仍存有疑惑,请先Google之,因为这两个概念不在本文的范围之内. 用多线程只有一个目的,那就是更好的利用cpu的资源,因为所有的多线程代码都可以用单线程来实现.说这个话其 ...

  4. linux c 获取系统时间

    #include <time.h> main() { time_t timep; time (&timep); printf(“%s”,asctime(gmtime(&ti ...

  5. WCF项目问题1-找不到类型“WCFService.Service1”,它在 ServiceHost 指令中提供为 Service 特性值,或在配置元素 system.serviceModel/serviceHostingEnvironment/serviceActivations 中提供。

    找不到类型“WCFService.Service1”,它在 ServiceHost 指令中提供为 Service 特性值,或在配置元素 system.serviceModel/serviceHosti ...

  6. ADB常用命令简洁版整理

    ADB全称Android Debug Bridge ,“安卓调试桥梁”连接Android和电脑通信的桥梁.  市面上常见的手机助手,底层调研的都是ADB命令行. C/S架构命令行工具,客户端和服务端都 ...

  7. MongoDB整理笔记の高级查询

    1.条件操作符 <, <=, >, >= 这个操作符就不用多解释了,最常用也是最简单的    db.collection.find({ "field" : ...

  8. C# - dynamic 特性

    dynamic是FrameWork4.0的新特性.dynamic的出现让C#具有了弱语言类型的特性.编译器在编译的时候不再对类型进行检查,编译期默认dynamic对象支持你想要的任何特性. 比如,即使 ...

  9. [转]Programmatically Register Assemblies in C#.

    1. Introduction. 1.1 After publishing Programmatically Register COM Dlls in C# back in 2011, I recei ...

  10. Windows bat脚步同步时间

    @echo onnet stop w32timew32tm /unregisterw32tm /registernet start w32timew32tm /config /manualpeerli ...