CF F - Tree with Maximum Cost (树形DP)给出你一颗带点权的树,dist(i, j)的值为节点i到j的距离乘上节点j的权值,让你任意找一个节点v,使得dist(v, i) (1 < i < n)的和最大。输出最大的值。
题目意思:
给出你一颗带点权的树,dist(i, j)的值为节点i到j的距离乘上节点j的权值,让你任意找一个节点v,使得dist(v, i) (1 < i < n)的和最大。输出最大的值。
题目分析:
首先如果你可以熟悉的使用树形dp的话 , 可以很快的意识的先从1号点开始dfs一遍,然后通过一些奇怪的方式,再dfs一遍得到其他点的贡献。无所以我们需要找到一个递推式是满足我选择其他号码为根时候,可以很快的得到答案 。 现在假设有两个节点v , fa ; v 是 fa 的儿子节点 , 根据dp的性质 与dfs的遍历顺序, 如果已经的遍历到 dp[v] 了 , 那dp[fa] 就一定是最优的答案 , 那显然 有式子 dp[v] = dp[fa]-sum[v] + sum[1]-sum[v] ;
为什么这样呢? 这个很好想 , 如果v是根的话 , sum[1]-sum[v] 就是计算的是(不是v子树)的贡献 , dp[fa]-sum[v] , 应为对dp[fa] 来说 结果已经是有sum[v] 的值了 , 这就是多的部分 ;
以上是自己的奇思妙想;
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn = * 1e5 + ; ll dp[maxn], sum[maxn], head[maxn];
int n, top;
ll ans;
struct node { //链式前向星存树,可以更换为其他的存储方式
int v, next;
}edge[maxn * ]; inline void add (int u, int v) //建边
{
edge[top].v = v;
edge[top].next = head[u];
head[u] = top++;
} void dfs(int u , int fa) //求出根为1的时候的dp
{
for(int i=head[u] ; i!=- ; i=edge[i].next)
{
int v=edge[i].v;
if(v!=fa)
{
dfs(v,u);
sum[u]+=sum[v];
dp[u] +=sum[v]+dp[v];
}
}
}
void solve(int u , int fa)
{
if(u!=)
dp[u]=dp[fa]-sum[u]+sum[]-sum[u];
for(int i=head[u] ; i!=- ; i=edge[i].next)
{
int v=edge[i].v;
if(v!=fa)
solve(v,u);
}
ans=max(ans,dp[u]);
}
int main()
{
int n;
scanf("%d",&n);
memset(head,-,sizeof(head));
memset(dp,,sizeof(dp));
for(int i= ; i<=n ; i++)
{
scanf("%I64d",&sum[i]);
}
int u,v;
for(int i= ; i<=n- ; i++)
{
scanf("%d%d",&u,&v);
add(u,v);
add(v,u);
}
dfs(,);
solve(,);
printf("%I64d\n",ans);
}
CF F - Tree with Maximum Cost (树形DP)给出你一颗带点权的树,dist(i, j)的值为节点i到j的距离乘上节点j的权值,让你任意找一个节点v,使得dist(v, i) (1 < i < n)的和最大。输出最大的值。的更多相关文章
- Codeforces Round #527 F - Tree with Maximum Cost /// 树形DP
题目大意: 给定一棵树 每个点都有点权 每条边的长度都为1 树上一点到另一点的距离为最短路经过的边的长度总和 树上一点到另一点的花费为距离乘另一点的点权 选定一点出发 使得其他点到该点的花费总和是最大 ...
- Codeforces Round #527 (Div. 3) F. Tree with Maximum Cost 【DFS换根 || 树形dp】
传送门:http://codeforces.com/contest/1092/problem/F F. Tree with Maximum Cost time limit per test 2 sec ...
- Codeforces 1092 F Tree with Maximum Cost (换根 + dfs)
题意: 给你一棵无根树,每个节点有个权值$a_i$,指定一个点u,定义$\displaystyle value = \sum^v a_i*dist(u,v)$,求value的最大值 n,ai<= ...
- Codeforces Round #527 (Div. 3) . F Tree with Maximum Cost
题目链接 题意:给你一棵树,让你找一个顶点iii,使得这个点的∑dis(i,j)∗a[j]\sum dis(i,j)*a[j]∑dis(i,j)∗a[j]最大.dis(i,j)dis(i,j)dis( ...
- Codeforces 1092F Tree with Maximum Cost(树形DP)
题目链接:Tree with Maximum Cost 题意:给定一棵树,树上每个顶点都有属性值ai,树的边权为1,求$\sum\limits_{i = 1}^{n} dist(i, v) \cdot ...
- CF1092 --- Tree with Maximum Cost
CF1324 --- Maximum White Subtree 题干 You are given a tree consisting exactly of \(n\) vertices. Tree ...
- Codeforces 835 F Roads in the Kingdom(树形dp)
F. Roads in the Kingdom(树形dp) 题意: 给一张n个点n条边的无向带权图 定义不便利度为所有点对最短距离中的最大值 求出删一条边之后,保证图还连通时不便利度的最小值 $n & ...
- 【HDU 5233】Tree chain problem (树形DP+树剖+线段树|树状数组)最大权不相交树链集
[题目] Tree chain problem Problem Description Coco has a tree, whose vertices are conveniently labeled ...
- Apple Tree POJ - 2486 (树形dp)
题目链接: D - 树形dp POJ - 2486 题目大意:一颗树,n个点(1-n),n-1条边,每个点上有一个权值,求从1出发,走V步,最多能遍历到的权值 学习网址:https://blog.c ...
随机推荐
- vim 的移动
越来也喜欢用linux的vim 来编程了,简单.高效.专业,最近拿着一本<vim的中文使用手册>在慢慢的看,看到现在就没有勇气继续看下去,我想先放一下,运用前面自己学的东西实际的去操作一下 ...
- Docker01 centos系统安装、centos安装docker、docker安装mongoDB
1 centos系统安装 本博文是基于 centos6.5 的,利用VMware 虚拟机搭建 centos6.5 系统 1.1 centos6.5资源获取 1.2 安装 1.2.1 新建虚拟机 1.2 ...
- 455. Assign Cookies 满足欲望 分配饼干
[抄题]: Assume you are an awesome parent and want to give your children some cookies. But, you should ...
- 面试题:Java程序员最常用的20%技术 已看1
首先常用api(String,StringBuffer/StringBuilder等) 1.集合类,线程类 2.Servlet(很少用纯粹的servlet写,但你要懂,因为很多框架都是基于servle ...
- 安全、结构良好的jQuery结构模板
安全.结构良好的jQuery结构模板 ;(function($,window,document,undefined){ //我们的代码- })(jQuery,window,document); 参 ...
- css总结16:HTML5 多媒体音频(Audio)视频(video )
1 显示嵌入网页中的 MP3 文件: <embed height="50" width="100" src="horse.mp3"&g ...
- java IO 管道流PipedOutputStream/PipedInputStream
详情:管道流的具体实现 import java.io.IOException; import java.io.PipedInputStream; import java.io.PipedOutputS ...
- 全排列——DFS实现
原创 之间就写过一篇全排列的博客:https://www.cnblogs.com/chiweiming/p/8727164.html 详细介绍请回看,用的方法(暂且就叫)是“交换法”,其实思路就是DF ...
- 一张图看懂ASP.NET MVC5认证和授权过滤器的执行顺序
IAuthenticationFilter是MVC5中的新特性,它有2个关键方法: OnAuthentication OnAuthenticationChallenge 当IAuthenticatio ...
- DB2 函数快速构造测试数据
函数快速构造测试数据 [案例]使用DB2内置函数快速构造测试数据 无论您是在用原型证明某一概念,还是开发一个全新的应用程序,或者只是学习 SQL,您都需要在您的应用程序上运行测试数据.为了有效地测试应 ...