题目意思:

给出你一颗带点权的树,dist(i, j)的值为节点i到j的距离乘上节点j的权值,让你任意找一个节点v,使得dist(v, i) (1 < i < n)的和最大。输出最大的值。

题目分析:

首先如果你可以熟悉的使用树形dp的话 , 可以很快的意识的先从1号点开始dfs一遍,然后通过一些奇怪的方式,再dfs一遍得到其他点的贡献。无所以我们需要找到一个递推式是满足我选择其他号码为根时候,可以很快的得到答案 。 现在假设有两个节点v , fa ; v 是 fa 的儿子节点 , 根据dp的性质 与dfs的遍历顺序, 如果已经的遍历到 dp[v] 了 , 那dp[fa] 就一定是最优的答案 , 那显然 有式子 dp[v] = dp[fa]-sum[v]  + sum[1]-sum[v] ;

为什么这样呢?  这个很好想 , 如果v是根的话 ,  sum[1]-sum[v] 就是计算的是(不是v子树)的贡献 , dp[fa]-sum[v] , 应为对dp[fa] 来说 结果已经是有sum[v] 的值了 , 这就是多的部分 ;

以上是自己的奇思妙想;

这篇博客解释的很好呀,大牛来的

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn = * 1e5 + ; ll dp[maxn], sum[maxn], head[maxn];
int n, top;
ll ans;
struct node { //链式前向星存树,可以更换为其他的存储方式
int v, next;
}edge[maxn * ]; inline void add (int u, int v) //建边
{
edge[top].v = v;
edge[top].next = head[u];
head[u] = top++;
} void dfs(int u , int fa) //求出根为1的时候的dp
{
for(int i=head[u] ; i!=- ; i=edge[i].next)
{
int v=edge[i].v;
if(v!=fa)
{
dfs(v,u);
sum[u]+=sum[v];
dp[u] +=sum[v]+dp[v];
}
}
}
void solve(int u , int fa)
{
if(u!=)
dp[u]=dp[fa]-sum[u]+sum[]-sum[u];
for(int i=head[u] ; i!=- ; i=edge[i].next)
{
int v=edge[i].v;
if(v!=fa)
solve(v,u);
}
ans=max(ans,dp[u]);
}
int main()
{
int n;
scanf("%d",&n);
memset(head,-,sizeof(head));
memset(dp,,sizeof(dp));
for(int i= ; i<=n ; i++)
{
scanf("%I64d",&sum[i]);
}
int u,v;
for(int i= ; i<=n- ; i++)
{
scanf("%d%d",&u,&v);
add(u,v);
add(v,u);
}
dfs(,);
solve(,);
printf("%I64d\n",ans);
}

CF F - Tree with Maximum Cost (树形DP)给出你一颗带点权的树,dist(i, j)的值为节点i到j的距离乘上节点j的权值,让你任意找一个节点v,使得dist(v, i) (1 < i < n)的和最大。输出最大的值。的更多相关文章

  1. Codeforces Round #527 F - Tree with Maximum Cost /// 树形DP

    题目大意: 给定一棵树 每个点都有点权 每条边的长度都为1 树上一点到另一点的距离为最短路经过的边的长度总和 树上一点到另一点的花费为距离乘另一点的点权 选定一点出发 使得其他点到该点的花费总和是最大 ...

  2. Codeforces Round #527 (Div. 3) F. Tree with Maximum Cost 【DFS换根 || 树形dp】

    传送门:http://codeforces.com/contest/1092/problem/F F. Tree with Maximum Cost time limit per test 2 sec ...

  3. Codeforces 1092 F Tree with Maximum Cost (换根 + dfs)

    题意: 给你一棵无根树,每个节点有个权值$a_i$,指定一个点u,定义$\displaystyle value = \sum^v a_i*dist(u,v)$,求value的最大值 n,ai<= ...

  4. Codeforces Round #527 (Div. 3) . F Tree with Maximum Cost

    题目链接 题意:给你一棵树,让你找一个顶点iii,使得这个点的∑dis(i,j)∗a[j]\sum dis(i,j)*a[j]∑dis(i,j)∗a[j]最大.dis(i,j)dis(i,j)dis( ...

  5. Codeforces 1092F Tree with Maximum Cost(树形DP)

    题目链接:Tree with Maximum Cost 题意:给定一棵树,树上每个顶点都有属性值ai,树的边权为1,求$\sum\limits_{i = 1}^{n} dist(i, v) \cdot ...

  6. CF1092 --- Tree with Maximum Cost

    CF1324 --- Maximum White Subtree 题干 You are given a tree consisting exactly of \(n\) vertices. Tree ...

  7. Codeforces 835 F Roads in the Kingdom(树形dp)

    F. Roads in the Kingdom(树形dp) 题意: 给一张n个点n条边的无向带权图 定义不便利度为所有点对最短距离中的最大值 求出删一条边之后,保证图还连通时不便利度的最小值 $n & ...

  8. 【HDU 5233】Tree chain problem (树形DP+树剖+线段树|树状数组)最大权不相交树链集

    [题目] Tree chain problem Problem Description Coco has a tree, whose vertices are conveniently labeled ...

  9. Apple Tree POJ - 2486 (树形dp)

    题目链接: D - 树形dp  POJ - 2486 题目大意:一颗树,n个点(1-n),n-1条边,每个点上有一个权值,求从1出发,走V步,最多能遍历到的权值 学习网址:https://blog.c ...

随机推荐

  1. ROS naviagtion analysis: costmap_2d--Costmap2D

    博客转载自:https://blog.csdn.net/u013158492/article/details/50492506 Costmap2D是存储地图数据的父类.真正的地图数据就存储在数据成员u ...

  2. http请求和返回的head字段

    一,http请求分请求首部字段,通用首部字段,实体首部字段.http响应包含响应首部字段,通用首部字段,实体首部字段. 二,http1.1定义了47种首部字段.1,通用首部字段:cache-contr ...

  3. CORS同源策略

    同源策略以及跨域资源共享在大部分情况下针对的是Ajax请求.同源策略主要限制了通过XMLHttpRequest实现的Ajax请求,如果请求的是一个“异源”地址,浏览器将不允许读取返回的内容. 支持同源 ...

  4. Java List集合和Map集合的综合应用

    public static void main(String[] args) { //--------------------------------------------------------- ...

  5. Java 错误结果Throw/Throws

    目录 java处理异常方式    throw的作用    throws的作用    方法原理    举例    总结 个人实例 1.java处理异常方式 在java代码中如果发生异常的话,jvm会抛出 ...

  6. 【C#】CLR内存那点事(初级)

    最近回头看了一下书,对内存的理解又有新的认识.我所关注的内存里面说没有寄存器的,所以我关注的只有 托管堆(heap),栈(stack), 字符串常量池(string是一个很特殊的对象) 首先我们看两个 ...

  7. CentOS Vi编辑器

    vim:通过vim a.cfg进入文档 i:编辑状态 ESC:返回不可编辑状态 dd:在不可编辑状态下,dd可删除光标所在的行,2dd删除两行,以此类推 u:在不可编辑状态下,u可恢复删除的行 yy: ...

  8. I-team 博客全文检索 Elasticsearch 实战

    一直觉得博客缺点东西,最近还是发现了,当博客慢慢多起来的时候想要找一篇之前写的博客很是麻烦,于是作为后端开发的楼主觉得自己动手丰衣足食,也就有了这次博客全文检索功能Elasticsearch实战,这里 ...

  9. react.js学习之路五

    最近没时间写博客,但是我一直在学习react,我发现react是一个巨大的坑,而且永远填不完的坑 关于字符串的拼接: 在react中,字符串的拼接不允许出现双引号“” ,只能使用单引号' ',例如这样 ...

  10. c++多线程基础2(命名空间 this_thread)

    整理自:zh.cppreference.com/w/cpp/thread std::this_thread::yield: 定义于头文件 <thread> 函数原型:void yield( ...