【莫队算法】【权值分块】poj2104 K-th Number / poj2761 Feed the dogs
先用莫队算法保证在询问之间转移的复杂度,每次转移都需要进行O(sqrt(m))次插入和删除,权值分块的插入/删除是O(1)的。
然后询问的时候用权值分块查询区间k小值,每次是O(sqrt(n))的。
所以总共的复杂度是O(m*(sqrt(n)+sqrt(m)))的。
常数极小。
别的按权值维护的数据结构无法做到O(1)地插入删除。
poj2104 的输出优化 别忘了处理负数。
完爆主席树,这份代码目前在 poj2761 上 Rank1。
| Rank | Run ID | User | Memory | Time | Language | Code Length | Submit Time |
|---|---|---|---|---|---|---|---|
| 1 | 13702017(2) | lizitong | 4056K | 579MS | G++ | 2455B | 2014-12-10 13:00:22 |
#include<cstdio>
#include<algorithm>
#include<cmath>
using namespace std;
int Num,CH[12],f,c;
inline void R(int &x){
c=0;f=1;
for(;c<'0'||c>'9';c=getchar())if(c=='-')f=-1;
for(x=0;c>='0'&&c<='9';c=getchar())(x*=10)+=(c-'0');
x*=f;
}
inline void P(int x){
if(x<10)putchar(x+'0');
else{P(x/10);putchar(x%10+'0');}
}
struct Point{int v,p;}t[100001];
struct Ask{int l,r,k,p;}Q[5001];
int n,m,a[100001],ma[100001],en,num[100001],num2[100001];
int l[330],r[330],sumv[330],b[100001],sum=1,anss[5001];
bool operator < (const Point &a,const Point &b){return a.v<b.v;}
bool operator < (const Ask &a,const Ask &b)
{return num2[a.l]!=num2[b.l] ? num2[a.l]<num2[b.l] : a.r<b.r;}
void Mo_Make_Block()
{
int sum=1,sz=sqrt(n); if(!sz) sz=1;
for(;sum*sz<n;++sum)
{
int r=sum*sz;
for(int i=(sum-1)*sz+1;i<=r;++i) num2[i]=sum;
}
for(int i=(sum-1)*sz+1;i<=n;++i) num2[i]=sum;
}
void Val_Make_Block()
{
int sz=sqrt(en); if(!sz) sz=1;
for(;sum*sz<en;++sum)
{
l[sum]=r[sum-1]+1; r[sum]=sum*sz;
for(int i=l[sum];i<=r[sum];++i) num[i]=sum;
}
l[sum]=r[sum-1]+1; r[sum]=en;
for(int i=l[sum];i<=r[sum];++i) num[i]=sum;
}
void Insert(const int &x){++b[x]; ++sumv[num[x]];}
void Delete(const int &x){--b[x]; --sumv[num[x]];}
int Kth(const int &x)
{
int cnt=0;
for(int i=1;;i++)
{
cnt+=sumv[i];
if(cnt>=x)
{
cnt-=sumv[i];
for(int j=l[i];;j++)
{cnt+=b[j]; if(cnt>=x) return j;}
}
}
}
int main()
{
R(n); R(m);
for(int i=1;i<=n;++i) {R(t[i].v); t[i].p=i;}
sort(t+1,t+n+1);
ma[a[t[1].p]=++en]=t[1].v;
for(int i=2;i<=n;++i)
{
if(t[i].v!=t[i-1].v) ++en;
ma[a[t[i].p]=en]=t[i].v;
}
Val_Make_Block();
for(int i=1;i<=m;++i)
{
R(Q[i].l); R(Q[i].r); R(Q[i].k);
Q[i].p=i;
}
Mo_Make_Block();
sort(Q+1,Q+m+1);
for(int i=Q[1].l;i<=Q[1].r;++i) Insert(a[i]);
anss[Q[1].p]=ma[Kth(Q[1].k)];
for(int i=2;i<=m;++i)
{
if(Q[i].l<Q[i-1].l) for(int j=Q[i-1].l-1;j>=Q[i].l;--j) Insert(a[j]);
else for(int j=Q[i-1].l;j<Q[i].l;++j) Delete(a[j]);
if(Q[i].r<Q[i-1].r) for(int j=Q[i-1].r;j>Q[i].r;--j) Delete(a[j]);
else for(int j=Q[i-1].r+1;j<=Q[i].r;++j) Insert(a[j]);
anss[Q[i].p]=ma[Kth(Q[i].k)];
}
for(int i=1;i<=m;++i) P(anss[i]),puts("");
return 0;
}
【莫队算法】【权值分块】poj2104 K-th Number / poj2761 Feed the dogs的更多相关文章
- BZOJ2038: [2009国家集训队]小Z的袜子(hose) -- 莫队算法 ,,分块
2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 Sec Memory Limit: 259 MBSubmit: 3577 Solved: 1652[Subm ...
- 莫队算法 sqrt(n)分块思想
在此说一下本渣对莫队算法思想的一些浅薄理解 莫队算法的思想就是对真个区间的分块,然后按照每块来分别进行计算,这样最终的复杂度可以达到n*sqrt(n) 小Z的袜子是一道非常经典的题目.:题目链接htt ...
- Luogu 1494 - 小Z的袜子 - [莫队算法模板题][分块]
题目链接:https://www.luogu.org/problemnew/show/P1494 题目描述 作为一个生活散漫的人,小Z每天早上都要耗费很久从一堆五颜六色的袜子中找出一双来穿.终于有一天 ...
- 莫队或权值线段树 或主席树 p4137
题目描述 有一个长度为n的数组{a1,a2,…,an}.m次询问,每次询问一个区间内最小没有出现过的自然数. 输入格式 第一行n,m. 第二行为n个数. 从第三行开始,每行一个询问l,r. 输出格式 ...
- 【BZOJ】4358: permu 莫队算法
[题意]给定长度为n的排列,m次询问区间[L,R]的最长连续值域.n<=50000. [算法]莫队算法 [题解]考虑莫队维护增加一个数的信息:设up[x]表示数值x往上延伸的最大长度,down[ ...
- 【莫队算法】【权值分块】bzoj3920 Yuuna的礼物
[算法一] 暴力. 可以通过第0.1号测试点. 预计得分:20分. [算法二] 经典问题:区间众数,数据范围也不是很大,因此我们可以: ①分块,离散化,预处理出: <1>前i块中x出现的次 ...
- 【莫队算法】【权值分块】bzoj2223 [Coci 2009]PATULJCI
不带修改主席树裸题<=>莫队+权值分块裸题. 复杂度O(m*sqrt(n)). P.S.题目描述坑爹,第二个数是权值的范围. #include<cstdio> #include ...
- 【DFS序】【莫队算法】【权值分块】bzoj2809 [Apio2012]dispatching
题意:在树中找到一个点i,并且找到这个点子树中的一些点组成一个集合,使得集合中的所有点的c之和不超过M,且Li*集合中元素个数和最大 首先,我们将树处理出dfs序,将子树询问转化成区间询问. 然后我们 ...
- 【莫队算法】【权值分块】bzoj3585 mex
orz PoPoQQQ. 本来蒟蒻以为这种离散化以后就对应不起来的题不能权值分块搞的说. ……结果,实际上>n的权值不会对答案作出贡献. #include<cstdio> #incl ...
随机推荐
- 适用于实数范围的中缀表达式的 + - * / ( ) 计算(C++实现)
核心算法: mid=FormatMid(mid); //格式化中缀表达式 JudgeLegalMid(mid); //判断中缀表达式的合法性 MidToPost mtp(mid); mtp.ToPos ...
- supervisor提高nodejs调试效率
1.NodeJS环境安装 2.安装supervisor npm install supervisor -g (表示安装到全局路径下) 开发nodejs程序,调试的时候,无论你修改了代码的哪一部分,都 ...
- 解决mysql报错:- Expression #1 of ORDER BY clause is not in GROUP BY clause and contains nonaggregated column 'information_schema.PROFILING.SEQ'
mysql执行报错: - Expression #1 of ORDER BY clause is not in GROUP BY clause and contains nonaggregated c ...
- [BZOJ1010][HNOI2008]玩具装箱toy 解题报告
Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1... ...
- sql 批量更新表中多字段为不同的值
,),,),rand()) select newid() ,) update tablename , FB,)) , ), FC,)) , )
- bzoj 1005 组合数学 Purfer Sequence
这题需要了解一种数列: Purfer Sequence 我们知道,一棵树可以用括号序列来表示,但是,一棵顶点标号(1~n)的树,还可以用一个叫做 Purfer Sequence 的数列表示 一个含有 ...
- 关于一些Java基础数据类型的常用方法的应用场景的小思考
昨天遇到一个问题,按照我的一半解决方法是传一个参数,然后通过参数来控制逻辑处理:但是领导发现String的一个方法也可以完全完成该问题!而我完全没有get到这个点! so,我认识到了自己的知识盲区:基 ...
- Newtonsoft.Json 序列化和反序列化 以及时间格式 2 高级使用
手机端应用讲究速度快,体验好.刚好手头上的一个项目服务端接口有性能问题,需要进行优化.在接口多次修改中,实体添加了很多字段用于中间计算或者存储,然后最终用Newtonsoft.Json进行序列化返回数 ...
- git add 文档
GIT-ADD(1) Git Manual GIT-ADD(1) NAME git-add - Add file contents to the index SYNOPSIS git add [-n] ...
- centos7当中的systemd及systemctl(节选)
全面进入centos7时代,这个东东是需要系统了解的. http://blog.jobbole.com/85070/?utm_source=blog.jobbole.com&utm_mediu ...