[HDU6268]Master of Subgraph
[HDU6268]Master of Subgraph
题目大意:
一棵\(n(n\le3000)\)个结点的树,每个结点的权值为\(w_i\)。给定\(m(m\le10^5)\),对于任意\(i\in[1,m]\),问书中是否有一个连通子图的权值和等于\(i\)。
思路:
重心剖分。考虑处理当前处理出的以重心\(x\)为根的子树。首先求出当前子树的DFS序,设用\(node[i]\)表示DFS序为\(i\)的结点编号。考虑动态规划,用\(f[i][j]\)(std::bitset<M> f[N]
)表示包含DFS序为\(i\)的结点,是否有权值和为\(j\)的连通子图。设当前结点为\(x\),枚举子结点\(y_{1\sim k}\),则转移方程为\(f[x]=(f[y_1]\vee f[y_2]\vee\ldots\vee f[y_k])<<w[x]\)。
由于事实上对于每一个\(x\),我们并不需要知道\(f[x]\),而只需要利用它们求出\(f[root]\)的值,因此我们对于每一个\(x\)可以和上一个计算过的同级兄弟结点\(node[dfn[x]+sz[x]]\)合并。按DFS倒序枚举每一个结点\(x\),其DFS序为\(i\)。此时的状态转移方程为\(f[i]=(f[i+1]<<w[x])|f[i+sz[x]]\)。时间复杂度\(\mathcal O(\frac{nm\log n}\omega)\)。
源代码:
#include<cstdio>
#include<cctype>
#include<bitset>
#include<forward_list>
inline int getint() {
register char ch;
while(!isdigit(ch=getchar()));
register int x=ch^'0';
while(isdigit(ch=getchar())) x=(((x<<2)+x)<<1)+(ch^'0');
return x;
}
constexpr int N=3001,M=1e5+1;
bool vis[N];
std::forward_list<int> e[N];
std::bitset<M> ans,f[N];
int n,m,w[N],size[N],sz[N],node[N],dfn[N],root,whole,min;
inline void add_edge(const int &u,const int &v) {
e[u].emplace_front(v);
e[v].emplace_front(u);
}
inline void clear() {
ans.reset();
for(register int i=1;i<=n;i++) {
vis[i]=false;
e[i].clear();
}
}
void dfs_root(const int &x,const int &par) {
size[x]=1;
int max=0;
for(auto &y:e[x]) {
if(y==par||vis[y]) continue;
dfs_root(y,x);
size[x]+=size[y];
max=std::max(max,size[y]);
}
max=std::max(max,whole-size[x]);
if(max<min) {
min=max;
root=x;
}
}
inline void get_root(const int &x,const int &sum) {
root=0;
min=n+1;
whole=sum;
dfs_root(x,0);
vis[root]=true;
}
void dfs(const int &x,const int &par) {
sz[x]=1;
dfn[x]=dfn[0]++;
node[dfn[x]]=x;
for(auto &y:e[x]) {
if(y==par||vis[y]) continue;
dfs(y,x);
sz[x]+=sz[y];
}
}
void solve(const int &x) {
dfn[0]=0;
dfs(x,0);
f[dfn[0]]=1;
for(register int i=dfn[0]-1;~i;i--) {
const int &y=node[i];
f[i]=(f[i+1]<<w[y])|f[i+sz[y]];
}
ans|=f[0];
for(auto &y:e[x]) {
if(vis[y]) continue;
get_root(y,size[y]);
solve(root);
}
}
int main() {
for(register int T=getint();T;T--) {
n=getint(),m=getint();
for(register int i=1;i<n;i++) {
add_edge(getint(),getint());
}
for(register int i=1;i<=n;i++) {
w[i]=getint();
}
get_root(1,n);
solve(root);
for(register int i=1;i<=m;i++) {
printf("%d",(int)ans[i]);
}
putchar('\n');
clear();
}
return 0;
}
[HDU6268]Master of Subgraph的更多相关文章
- 算法学习分析-点分治 HDU 6269 Master of Subgraph
首先给出定义 点分治是一种处理树上路径的工具 挂出一道题目来:Master of Subgraph 这道题目让你求所有联通子图加和所能产生数字,问你1到m之间,那些数字可以被产生 这道题目,假如我们利 ...
- Master of Subgraph
Problem E. Master of SubgraphYou are given a tree with n nodes. The weight of the i-th node is wi. G ...
- hdu 6268 Master of Subgraph(点分治+bitset)
You are given a tree with n nodes. The weight of the i-th node is wi. Given a positive integer m, no ...
- HDU - 6268: Master of Subgraph (分治+bitset优化背包)
题意:T组样例,给次给出一个N节点的点权树,以及M,问连通块的点权和sum的情况,输出sum=1到M,用0或者1表示. 思路:背包,N^2,由于是无向的连通块,所以可以用分治优化到NlgN. 然后背包 ...
- HDU 6268 Master of Subgraph (2017 CCPC 杭州 E题,树分治 + 树上背包)
题目链接 2017 CCPC Hangzhou Problem E 题意 给定一棵树,每个点有一个权值,现在我们可以选一些连通的点,并且把这点选出来的点的权值相加,得到一个和. 求$[1, m] ...
- CCPC 2016 杭州 E. Master of Subgraph(点分治+bitset优化DP)
题目链接:http://acm.hdu.edu.cn/downloads/CCPC2018-Hangzhou-ProblemSet.pdf 题意:给定一棵有 n 个结点的树和一个数 m,对于 i ∈ ...
- The 2017 China Collegiate Programming Contest, Hangzhou Site Solution
A: Super_palindrome 题面:给出一个字符串,求改变最少的字符个数使得这个串所有长度为奇数的子串都是回文串 思路:显然,这个字符串肯定要改成所有奇数位相同并且所有偶数位相同 那统计一下 ...
- 2017 CCPC杭州 题解
2017CCPC杭州题目PDF Problem A. Super-palindrome 题解: 给你一个字符串,每一步可以将一个字符替换为另一个字符,问你最少多少步可以使得,该字符串任意奇数子串为回文 ...
- ROS知识(20)----使用Master_API查询Master管理的节点话题服务内容
在一些应用中会需要获取master的uri地址,发布的话题,订阅的话题,发布的服务,节点的信息等等.这些功能我们通常可一通过rosnode list, rosnode info, rostopic l ...
随机推荐
- 使用babel把es6代码转成es5代码
第一步:创建一个web项目 使用命令:npm init 这个命令的目的是生成package.json. 执行第二步中的命令后生成的package.json的文件的内容是: { "name&q ...
- CentOS 6.4安装配置ldap
CentOS 6.5安装配置ldap 时间:2015-07-14 00:54来源:blog.51cto.com 作者:"ly36843运维" 博客 举报 点击:274次 一.安装l ...
- 获取html元素内容
html: <!DOCTYPE ><html> <head> <meta http-equiv="Content-Type" conten ...
- Windows下安装Mycat-web
Mycat-web是基于Mycat的一个性能监控工具,如:sql性能监控等. 在安装Mycat-web之前需要先安装Zookeeper: 可参考: http://blog.csdn.net/tlk20 ...
- iOS 之持久化存储 plist、NSUserDefaults、NSKeyedArchiver、数据库
1.什么是持久化? 本人找了好多文章都没有找到满意的答案,最后是从孙卫琴写的<精通Hibernate:Java对象持久化技术详解>中,看到如下的解释,感觉还是比较完整的.摘抄如下: 狭义的 ...
- linux基础——磁盘分区和yum安装
第一部分 1) 开启Linux系统前添加一块大小为15G的SCSI硬盘 2) 开启系统,右击桌面,打开终端 3) 为新加的硬盘分区,一个主分区大小为5G,剩余空间给扩展分区,在扩展分区上划分1 ...
- 转一篇CF题目的博客
题意: 给你一颗n(n<=10^5)个节点树根为1的树,然后进行dfs,求每个点,在dfs中被访问时间的期望. let starting_time be an array of length n ...
- SQL中使用UPDATE更新数据时一定要记得WHERE子句
我们在使用 SQL 中的 UPDATE 更新数据时,一般都不会更新表中的左右数据,所以我们更新的数据的 SQL 语句中会带有 WHERE 子句,如果没有WHERE子句,就回更新表中所有的数据,在 my ...
- ECharts问题--散点图中对散点添加点击事件
1. 我们这次就没有先讲解怎么使用散点图了,这个跟之前的一些图还是很类似的,不会的可以去官网上面查看 API 使用.我们这次讲解的是为散点图中的散点添加点击事件,然后在图表之外的一个 div 里面显示 ...
- java连接Fastdfs图片服务器上传失败的解决方法
照着视频上做,但是却连接不了虚拟机linux上的图片服务器,估计是linux防火墙的问题(这个实在是神烦,前面有好几次连接不了都是因为linux防火墙),果不其然,关闭即可. Linux关闭防火墙的命 ...