[CTSC2017]吉夫特(Lucas定理,DP)
送70分,预处理组合数是否为偶数即可。
剩下的数据,根据Lucas定理的推论可得当且仅当n&m=n的时候,C(n,m)为奇数。
这样就可以直接DP了,对于每个数,考虑它对后面的数的影响即可,直接枚举子集即可。
#include<cstdio>
#include<algorithm>
#define rep(i,l,r) for (int i=l; i<=r; i++)
using namespace std; const int N=,mod=;
int n,ans,a[N],f[N],pos[N];
void up(int &x,int y){ x+=y; if (x>=mod) x-=mod; } int main(){
freopen("gift.in","r",stdin);
freopen("gift.out","w",stdout);
scanf("%d",&n);
rep(i,,n) scanf("%d",&a[i]),pos[a[i]]=i,f[a[i]]=;
rep(i,,n) for (int s=(a[i]-)&a[i]; s; s=(s-)&a[i])
if (pos[s]>i) up(f[s],f[a[i]]);
rep(i,,n) up(ans,f[a[i]]);
printf("%d\n",(ans-n+mod)%mod);
return ;
}
[CTSC2017]吉夫特(Lucas定理,DP)的更多相关文章
- 洛谷P3773 [CTSC2017]吉夫特(Lucas定理,dp)
题意 满足$b_1 < b_2 < \dots < b_k$且$a_{b_1} \geqslant a_{b_2} \geqslant \dots \geqslant a_{b_k} ...
- bzoj4903 & loj2264 [Ctsc2017]吉夫特 Lucas 定理+状压DP
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4903 https://loj.ac/problem/2264 http://uoj.ac/pr ...
- BZOJ.4903.[CTSC2017]吉夫特(Lucas DP)
题目链接 首先\(C(n,m)\)为奇数当且仅当\(n\&m=m\). 简要证明: 因为是\(mod\ 2\),考虑Lucas定理. 在\(mod\ 2\)的情况下\(C(n,m)\)最后只会 ...
- BZOJ 3782: 上学路线 [Lucas定理 DP]
3782: 上学路线 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 192 Solved: 75[Submit][Status][Discuss] ...
- uoj 300 [CTSC2017]吉夫特 - Lucas - 分块 - 动态规划
题目传送门 戳此处转移 题目大意 给定一个长为$n$的序列,问它有多少个长度大于等于2的子序列$b_{1}, b_{2}, \cdots, b_{k}$满足$\prod_{i = 2}^{k}C_{b ...
- 【CTSC2017】【BZOJ4903】吉夫特 卢卡斯定理 DP
题目描述 给你一个长度为\(n\)的数列\(a\),求有多少个长度\(\geq 2\)的不上升子序列\(a_{b_1},a_{b_2},\ldots,a_{b_k}\)满足 \[ \prod_{i=2 ...
- HDU 5794 A Simple Chess Lucas定理+dp
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5794 题意概述: 给出一个N*M的网格.网格上有一些点是障碍,不能经过.行走的方式是向右下角跳马步.求 ...
- [CTSC2017][bzoj4903] 吉夫特 [状压dp+Lucas定理]
题面 传送门 思路 一句话题意: 给出一个长度为 n 的序列,求所有长度大于等于2的子序列个数,满足:对于子序列中任意两个相邻的数 a和 b (b 在 a 前面),$C_a^b mod 2=1$,答案 ...
- loj 300 [CTSC2017]吉夫特 【Lucas定理 + 子集dp】
题目链接 loj300 题解 orz litble 膜完题解后,突然有一个简单的想法: 考虑到\(2\)是质数,考虑Lucas定理: \[{n \choose m} = \prod_{i = 1} { ...
随机推荐
- win32 application怎么把结果输出到调试窗口
方法1: TCHAR str[]; wsprintf(str, TEXT(); OutputDebugString(TEXT("-------lala------\n")); Ou ...
- 2018 BAT最新 php面试必考题
收集一些实用php面试题及答案给大家 做为程序员,到IT企业面试的时候肯定会有笔试这关,那就要考考你的PHP知识了,所以本站收集一些实用的php面试题及答案给大家. 基础题: 1.表单中 get与 ...
- oracle的rownum使用
对于rownum来说它是Oracle系统顺序分配为从查询返回的行的编号,返回的第一行分配的是1,第二行是2,依此类推,这个伪字段可以用于限制查询返回的总行数,且rownum不能以任何表的名称作为前缀. ...
- hadoop更换硬盘
hadoop服务器更换硬盘操作步骤(datanode hadoop目录${HADOOP_HOME}/bin 日志位置:/var/log/hadoop)1.登陆服务器,切换到mapred用户,执行 ...
- wait , notify 模拟 Queue
package com.itdoc.multi.sync009; import java.util.LinkedList; import java.util.concurrent.TimeUnit; ...
- GET和POST本质上有什么区别,这才是标准答案
不知道各位读者在面试的时候,有没有被问过这个问题:"请说一下GET和POST两者的本质区别".基本上做过WEB开发的,对这个问题,都可以回答出一堆的区别. 比如: 最直接的区别,G ...
- JAVA中List<Long> 转long[]的方法
之前每次都是通过循环去写,感觉代码不够优雅,百度了一下,查到如下的写法,先记下来: List<Long> list = new ArrayList<Long>(); list. ...
- python3 json、logging、sys模块
json模块 import json dic = {'name':'egon','age':32} # ------------------------------>序列化 f = open(' ...
- unicode字符串解码显示
# encoding: utf-8 ''' unicode字符串解码显示 ''' import sys reload(sys) sys.setdefaultencoding('utf-8') a = ...
- (转)自动安装VIM插件
转自: http://xwz.me/wiki/doku.php?id=vim:plugins 我的插件列表 把下面GetLatestVimScripts.dat放进~/.vim/GetLatest/目 ...