Description

master 对树上的求和非常感兴趣。他生成了一棵有根树,并且希望多次询问这棵树上一段路径上所有节点深度的\(k\) 次方和,而且每次的\(k\) 可能是不同的。此处节点深度的定义是这个节点到根的路径上的边数。他把这个问题交给了pupil,但pupil 并不会这么复杂的操作,你能帮他解决吗?

Input

第一行包含一个正整数\(n\),表示树的节点数。

之后\(n-1\) 行每行两个空格隔开的正整数\(i,j\),表示树上的一条连接点\(i\) 和点\(j\)的边。

之后一行一个正整数\(m\),表示询问的数量。

之后每行三个空格隔开的正整数\(i, j, k\),表示询问从点\(i\)到点\(j\) 的路径上所有节点深度的\(k\) 次方和。由于这个结果可能非常大,输出其对\(998244353\) 取模的结果。

树的节点从\(1\) 开始标号,其中\(1\) 号节点为树的根。

Output

对于每组数据输出一行一个正整数表示取模后的结果。

wa了好多次,结果发现括号匹配错了QAQ。

很明显,这题可以预处理出来\(gw[u][i]\)代表从\(1\)到\(u\)路径上点的深度的\(i\)次方的和.(这是一个前缀和.

然后在\(DFS\)的时候预处理出来倍增数组和\(gw\)数组即可.

预处理\(gw\)数组

\[gw[u][i]=gw[fa][i]+ksm(depth[u],i)
\]

然后根据差分

\[gw[x][i]+gw[y][i]-(gw[lca_{x,y}][i]+gw[father[lca_{x,y}]][i])
\]

求出\(x,y\)之间的答案即可.

后面的括号写错了,难受得一逼.QAQ

代码

#include<cstdio>
#include<algorithm>
#include<cctype>
#define mod 998244353
#define int long long
#define N 300008
#define R register
using namespace std;
inline void in(int &x)
{
int f=1;x=0;char s=getchar();
while(!isdigit(s)){if(s=='-')f=-1;s=getchar();}
while(isdigit(s)){x=x*10+s-'0';s=getchar();}
x*=f;
}
int n,head[N],tot;
struct cod{int u,v;}edge[N<<2];
inline void add(int x,int y)
{
edge[++tot].u=head[x];
edge[tot].v=y;
head[x]=tot;
}
int depth[N],f[N][21],gw[N][53];
int q;
inline int ksm(int x,int y)
{
R int res=1;
for(;y;y>>=1,x=x%mod*x%mod)
if(y&1)res=res%mod*x%mod;
return res;
}
void dfs(int u,int fa)
{
f[u][0]=fa;depth[u]=depth[fa]+1;
for(R int i=1;(1<<i)<=depth[u];i++)
f[u][i]=f[f[u][i-1]][i-1];
for(R int i=1;i<=52;i++)
gw[u][i]=gw[fa][i]+ksm(depth[u],i);
for(R int i=head[u];i;i=edge[i].u)
{
if(edge[i].v==fa)continue;
dfs(edge[i].v,u);
}
}
inline int lca(int x,int y)
{
if(depth[x]>depth[y])swap(x,y);
for(R int i=20;i>=0;i--)
if(depth[x]+(1<<i)<=depth[y])
y=f[y][i];
if(x==y)return x;
for(R int i=20;i>=0;i--)
{
if(f[x][i]==f[y][i])continue;
x=f[x][i],y=f[y][i];
}
return f[x][0];
}
signed main()
{
in(n);
for(R int i=1,x,y;i<n;i++)in(x),in(y),add(x,y);
depth[1]=-1;dfs(1,1);in(q);
for(R int i=1,x,y,k;i<=q;i++)
{
in(x),in(y),in(k);
R int la=lca(x,y);
printf("%lld\n",(((gw[x][k]+gw[y][k])%mod-(gw[la][k]+gw[f[la][0]][k])%mod)+mod)%mod);
}
}

LCA+差分【p4427】[BJOI2018]求和的更多相关文章

  1. P4427 [BJOI2018]求和

    P4427 [BJOI2018]求和 同[TJOI2018]教科书般的扭曲虚空 懒得写了(雾 #include<bits/stdc++.h> #define il inline #defi ...

  2. Luogu P4427 [BJOI2018]求和

    这是一道巨狗题,我已无力吐槽为什么我怎么写都不过 我们对于这种无修改的边权题目有一个经典的树上差分套路: \(ans=sum_x+sum_y-2\cdot sum_{LCA(x,y)}\) 这里的\( ...

  3. 洛谷P4427 [BJOI2018]求和

    \(\Large\textbf{Description: } \large{一颗n个节点的树,m次询问,每次查询点i到点j的路径上所有节点点深度的k次方的和并对998244353取模(1\leq n, ...

  4. 【BZOJ5293】[BJOI2018]求和(前缀和,LCA)

    [BZOJ5293][BJOI2018]求和(前缀和,LCA) 题面 BZOJ 洛谷 题解 送分题??? 预处理一下\(k\)次方的前缀和. 然后求个\(LCA\)就做完了?... #include& ...

  5. bzoj5293: [Bjoi2018]求和

    题目链接 bzoj5293: [Bjoi2018]求和 题解 暴力 对于lca为1的好坑啊.... 代码 #include<cmath> #include<cstdio> #i ...

  6. NOIP2015 运输计划(二分+LCA+差分)

    4326: NOIP2015 运输计划 Time Limit: 30 Sec  Memory Limit: 128 MBSubmit: 308  Solved: 208[Submit][Status] ...

  7. BZOJ5293:[BJOI2018]求和(LCA,差分)

    Description master 对树上的求和非常感兴趣.他生成了一棵有根树,并且希望多次询问这棵树上一段路径上所有节点深度的k  次方和,而且每次的k 可能是不同的.此处节点深度的定义是这个节点 ...

  8. BZOJ5293: [Bjoi2018]求和 树上差分

    Description master 对树上的求和非常感兴趣.他生成了一棵有根树,并且希望多次询问这棵树上一段路径上所有节点深度的k  次方和,而且每次的k 可能是不同的.此处节点深度的定义是这个节点 ...

  9. Luogu4427 [BJOI2018]求和 (树上差分)

    预处理,树上差分.注意深度减一 #include <cstdio> #include <iostream> #include <cstring> #include ...

随机推荐

  1. 【题解】SCOI2009围豆豆

    很久之前就很想做的一道题,一直思考到今天才下定决心看题解.这道题中,很关键的一点就在于:如何判断一个点是否在一个多边形内?其实如果计算几何基本功扎实的话,应该是可以很快给出答案的(可惜我完全不行):由 ...

  2. hdu4035 Maze 【期望dp + 数学】

    题目链接 BZOJ4035 题解 神题啊...orz 不过网上题解好难看,数学推导不写\(Latex\)怎么看..[Latex中毒晚期] 我们由题当然能很快写出\(dp\)方程 设\(f[i]\)表示 ...

  3. AnnotationConfigApplicationContext.的用法的核心代码

    public static void main(String[] args) {ApplicationContext ctx = new AnnotationConfigApplicationCont ...

  4. python基础(3)_列表、元组、字典

    一.列表 定义:[ ] 内以逗号分隔,按照索引,存放各种数据类型,每个位置代表一个元素 特性: > 可存放多个值 > 可修改指定索引位置对应的值,可变 > 按照从左到右的顺序定义列表 ...

  5. 【20160811】noip模拟-未完

    T1 T2 T3 小奇回地球 [问题描述] 简单来说,它要从标号为1的星球到标号为n的星球,某一些星球之间有航线.由于超时空隧道的存在,从一个星球到另一个星球时间可能会倒流,而且,从星球a到b耗费的时 ...

  6. 【BZOJ4080】【WF2014】Sensor Network [随机化]

    Sensor Network Time Limit: 2 Sec  Memory Limit: 128 MB[Submit][Status][Discuss] Description 魔法炮来到了帝都 ...

  7. spoj p104 Matrix-Tree定理

    这个问题就是经典的生成树记数问题,题目为spoj p104 highway. 首先我们引入Matrix-Tree定理,由kirchhoff证明,定理的概述为,对于图G,我们定义若干个矩阵, D[G], ...

  8. UpdateData的用法(转)

    原文转自 https://blog.csdn.net/ddjj_1980/article/details/51452289 UpdateData(TRUE)——刷新控件的值到对应的变量.(外部输入值交 ...

  9. linux基础-临时和永久修改ip地址以及通配符相关

    一.临时配置网络(ip,网关,dns) 修改临时ip地址: 1.ifconfig查看当前的网卡和ip地址 2.临时修改IP地址:ifconfig ens32 192.168.16.200/24,ifc ...

  10. 【luogu2574】xor的艺术

    一道无聊的线段树题,写着玩玩而已…… #include<bits/stdc++.h> #define N 1000010 #define lson (o<<1) #define ...