UVA 11014 - Make a Crystal

题目链接

题意:给定一个NxNxN的正方体,求出最多能选几个整数点。使得随意两点PQ不会使PQO共线。

思路:利用容斥原理,设f(k)为点(x, y, z)三点都为k的倍数的点的个数(要扣掉一个原点O)。那么全部点就是f(1),之后要去除掉共线的,就是扣掉f(2), f(3), f(5)..f(n)。n为素数.由于这些素数中包括了合数的情况,而且这些点必定与f(1)除去这些点以外的点共线,所以扣掉.可是扣掉后会扣掉一些反复的。比方f(6)在f(3)和f(2)各被扣了一次。所以还要加回来。利用容斥原理,答案为

f(1) - f(一个质因子) + f(两个质因子)...

所以先预处理一个素数表,枚举n,去分解因子,推断个数,奇数为减偶数为加,这样求出答案

代码:

#include <stdio.h>
#include <string.h> const int N = 200005;
long long n;
long long prime[N];
int pn = 0, vis[N]; long long pow3(long long num) {
return num * num * num - 1;
} int count(long long num) {
int ans = 0;
for (int i = 0; i < pn && prime[i] <= num; i++) {
if (!vis[num]) {ans++; break;}
if (num % prime[i] == 0) {
ans++;
num /= prime[i];
if (num % prime[i] == 0) return -1;
}
}
return ans;
} long long cal(long long num) {
int t = count(num);
if (t == -1) return 0;
if (t&1) return -pow3((n / 2 / num) * 2 + 1);
else return pow3((n / 2 / num) * 2 + 1);
} long long solve() {
long long ans = pow3(n + 1);
for (long long i = 2; i <= n; i++)
ans += cal(i);
return ans;
} int main() {
vis[1] = 1;
for (long long i = 2; i < N; i++) {
if (vis[i]) continue;
prime[pn++] = i;
for (long long j = i * i; j < N; j += i)
vis[j] = 1;
}
int cas = 0;
while (~scanf("%lld", &n) && n) {
printf("Crystal %d: %lld\n", ++cas, solve());
}
return 0;
}

UVA 11014 - Make a Crystal(容斥原理)的更多相关文章

  1. UVA - 11014 Make a Crystal (莫比乌斯反演)

    给定一个n*n*n的立方体(中心点为原点O),选择尽量多的点,使得对于任意两点A,B,B不在线段OA上. 可以发现,原问题可转化为三维坐标下的点(x,y,z)中有多少个点的gcd(x,y,z)=1. ...

  2. UVA.10325 The Lottery (组合数学 容斥原理 二进制枚举)

    UVA.10325 The Lottery (组合数学 容斥原理) 题意分析 首先给出一个数n,然后给出m个数字(m<=15),在[1-n]之间,依次删除给出m个数字的倍数,求最后在[1-n]之 ...

  3. UVa 11014 (莫比乌斯反演) Make a Crystal

    这个题是根据某个二维平面的题改编过来的. 首先把问题转化一下, 就是你站在原点(0, 0, 0)能看到多少格点. 答案分为三个部分: 八个象限里的格点,即 gcd(x, y, z) = 1,且xyz均 ...

  4. Make a Crystal UVA - 11014 (容斥定理)

    题意:给定一个NxNxN的正方体,求出最多能选几个整数点,使得任意两点PQ不会使PQO共线. 思路:利用容斥原理,设f(k)为点(x, y, z)三点都为k的倍数的点的个数(要扣掉一个原点O),那么所 ...

  5. UVA 12075 - Counting Triangles(容斥原理计数)

    题目链接:12075 - Counting Triangles 题意:求n * m矩形内,最多能组成几个三角形 这题和UVA 1393类似,把总情况扣去三点共线情况,那么问题转化为求三点共线的情况,对 ...

  6. UVA 10325 The Lottery( 容斥原理)

    The Sports Association of Bangladesh is in great problem with their latest lottery `Jodi laiga Jai'. ...

  7. UVA 11806 Cheerleaders (组合+容斥原理)

    自己写的代码: #include <iostream> #include <stdio.h> #include <string.h> /* 题意:相当于在一个m*n ...

  8. UVa 11806 - Cheerleaders (组合计数+容斥原理)

    <训练指南>p.108 #include <cstdio> #include <cstring> #include <cstdlib> using na ...

  9. UVa 1393 (容斥原理、GCD) Highways

    题意: 给出一个n行m列的点阵,求共有多少条非水平非竖直线至少经过其中两点. 分析: 首先说紫书上的思路,编程较简单且容易理解.由于对称性,所以只统计“\”这种线型的,最后乘2即是答案. 枚举斜线包围 ...

随机推荐

  1. Spring Struts里用到的设计模式

    Bean工厂的Factory模式 AOP的Proxy模式

  2. [BZOJ 2768] 冠军调查

    Link:https://www.lydsy.com/JudgeOnline/problem.php?id=2768 Solution: 一道比较基础的最大流的题目 一般看到将点分为两类的题目就要往网 ...

  3. 洛谷 - Sdchr 的邀请赛 T1 取石子

    比赛的时候都推出来了和 质因子的指数和有关,硬是没做出来QWQ,我傻死算了 但其实这是一个结论题,因为这本来就是阶梯NIM游戏的模型.阶梯NIM游戏是指,有 n+1 阶台阶(0 ~ n),每阶上都有若 ...

  4. 解决VM虚拟机中的ubuntu不能全屏的问题

    Ctrl+alt+T:打开终端 输入命令:sudo apt install open-vm* 运行之后重启一下虚拟机就可以了

  5. Asp.Net MVC part2 View、Controller详解

    View详解Razor视图引擎简介HtmlHelper强类型页面 Razor视图引擎简介强大的@:表示使用C#代码,相当于aspx中的<%%>可以完成输出功能当遇到html标签时会认为C# ...

  6. ios如何实现被键盘遮挡时,带有textfield的tableview自动上移

    最正规的办法,用通知step 1:在进入视图的时候添加监视:(viewDidLoad什么的)   复制代码 // Observe keyboard hide and show notification ...

  7. Oracle审计--AUD$占用空间较大处理方案

    Oracle 11G以后,数据库默认是开启审计功能的,因此有时候我们忘记了关闭该功能导致SYSTEM表空间暴满,但由于关闭审计功能需要重启数据库,此类操作生产环境下是不允许的,因此我们需要找出哪类审计 ...

  8. ES6笔记之参数默认值(译)

    原文链接:http://dmitrysoshnikov.com/ 原文作者:Dmitry Soshnikov 译者做了少量补充.这样的的文字是译者加的,可以选择忽略. 作者微博:@Bosn 在这个简短 ...

  9. appium自动化,失败自动截图

    1.创建监听器类TestNGListener,重写onTestFailure方法,里面定义了 监听的driver ,截图文件路径和名称 package utils; import cases.Appi ...

  10. Java LinkedList的模拟实现

    双向链表也叫双链表,是链表的一种,它的每个数据结点中都有两个指针,分别指向直接后继和直接前驱.所以,从双向链表中的任意一个结点开始,都可以很方便地访问它的前驱结点和后继结点.查询即从第一个节点,不断指 ...