https://cs.stanford.edu/people/karpathy/deepimagesent/

Abstract

We present a model that generates natural language descriptions of images and their regions. Our approach leverages datasets of images and their sentence descriptions to learn about the inter-modal correspondences between language and visual data. Our alignment model is based on a novel combination of Convolutional Neural Networks over image regions, bidirectional Recurrent Neural Networks over sentences, and a structured objective that aligns the two modalities through a multimodal embedding. We then describe a Multimodal Recurrent Neural Network architecture that uses the inferred alignments to learn to generate novel descriptions of image regions. We demonstrate that our alignment model produces state of the art results in retrieval experiments on Flickr8K, Flickr30K and MSCOCO datasets. We then show that the generated descriptions significantly outperform retrieval baselines on both full images and on a new dataset of region-level annotations.

我们展示了一个模型,它能生成图像和它们区域的自然语言描述。我们的方法杠杆平衡图像集与它们的句子描述,以学习语言和视觉数据之间内在模态的关系。我们的对齐模型是基于一种新的结合,图像区域的卷积神经网络,句子的双向递归神经网络,和通过多模态嵌入对齐两种模式的结构化目标。然后,我们描述了一种多模式递归神经网络架构,它是使用推断对齐方法来学习生成图像区域的新描述。我们证明我们的对齐模型在FLICKR8K、FLIKR30K和MSCCOO数据集的检索实验中产生最先进的结果。然后,我们表示,生成的描述显著地胜过无论是全图还是新的区域水平标注数据集的检索基线。

Code:链接 其他

1. Introduction简介

A quick glance at an image is sufficient for a human to point out and describe an immense amount of details about the visual scene [14]. However, this remarkable ability has proven to be an elusive task for our visual recognition models. The majority of previous work in visual recognition has focused on labeling images with a fixed set of visual categories and great progress has been achieved in these endeavors [45, 11]. However, while closed vocabularies of visual concepts constitute a convenient modeling assumption, they are vastly restrictive when compared to the enormous amount of rich descriptions that a human can compose.

对人类来说快速地看一眼图片并指出并描述视觉场景的详细细节是足够的。但是,这个杰出的能力已证明对视觉识别模型来说是一个难以捉摸的任务。

Some pioneering approaches that address the challenge of generating image descriptions have been developed [29,13]. However, these models often rely on hard-coded visual concepts and sentence templates, which imposes limits on their variety. Moreover, the focus of these works has been on reducing complex visual scenes into a single sentence, which we consider to be an unnecessary restriction.

In this work, we strive to take a step towards the goal of  generating dense descriptions of images (Figure 1). The primary challenge towards this goal is in the design of a model that is rich enough to simultaneously reason about contents of images and their representation in the domain of natural language. Additionally, the model should be free of assumptions about specific hard-coded templates, rules or categories and instead rely on learning from the training data. The second, practical challenge is that datasets of image captions are available in large quantities on the internet[21, 58, 37], but these descriptions multiplex mentions of several entities whose locations in the images are unknown.

Deep Visual-Semantic Alignments for Generating Image Descriptions(深度视觉-语义对应对于生成图像描述)的更多相关文章

  1. Paper Reading - Deep Visual-Semantic Alignments for Generating Image Descriptions ( CVPR 2015 )

    Link of the Paper: https://arxiv.org/abs/1412.2306 Main Points: An Alignment Model: Convolutional Ne ...

  2. 论文笔记:Visual Semantic Navigation Using Scene Priors

    Visual Semantic Navigation Using Scene Priors 2018-10-21 19:39:26 Paper:  https://arxiv.org/pdf/1810 ...

  3. 论文:利用深度强化学习模型定位新物体(VISUAL SEMANTIC NAVIGATION USING SCENE PRIORS)

    这是一篇被ICLR 2019 接收的论文.论文讨论了如何利用场景先验知识 (scene priors)来定位一个新场景(novel scene)中未曾见过的物体(unseen objects).举例来 ...

  4. 论文笔记之:Pedestrian Detection aided by Deep Learning Semantic Tasks

    Pedestrian Detection aided by Deep Learning Semantic Tasks CVPR 2015 本文考虑将语义任务(即:行人属性和场景属性)和行人检测相结合, ...

  5. 论文笔记:Improving Deep Visual Representation for Person Re-identification by Global and Local Image-language Association

    Improving Deep Visual Representation for Person Re-identification by Global and Local Image-language ...

  6. DSSM(DEEP STRUCTURED SEMANTIC MODELS)

    Huang, Po-Sen, et al. "Learning deep structured semantic models for web search using clickthrou ...

  7. Deep Learning 8_深度学习UFLDL教程:Stacked Autocoders and Implement deep networks for digit classification_Exercise(斯坦福大学深度学习教程)

    前言 1.理论知识:UFLDL教程.Deep learning:十六(deep networks) 2.实验环境:win7, matlab2015b,16G内存,2T硬盘 3.实验内容:Exercis ...

  8. Deep Learning 学习随记(五)深度网络--续

    前面记到了深度网络这一章.当时觉得练习应该挺简单的,用不了多少时间,结果训练时间真够长的...途中debug的时候还手贱的clear了一下,又得从头开始运行.不过最终还是调试成功了,sigh~ 前一篇 ...

  9. 【ML】Predict and Constrain: Modeling Cardinality in Deep Structured Prediction -预测和约束:在深度结构化预测中建模基数

    [论文标题]Predict and Constrain: Modeling Cardinality in Deep Structured Prediction   (35th-ICML,PMLR) [ ...

随机推荐

  1. 区域存储网络(SAN)与 网络直接存储(NAS)

    随着互联网及网络应用的飞速发展,数据信息存储系统所需处理的数据类型也呈爆炸性增长,这使数据信息存储系统面临前所未有的挑战.附加式网络存储装置(Network Attached Storage,缩写为N ...

  2. About CoffeeScript

    本篇文章是对CoffeeScript做一个初步的了解.入门的学习笔记. 什么是CoffeeScript 一种新编程语言,是一套JavaScript的转译语言,可编译成高效的JavaScript.还可以 ...

  3. 【转】关于一个Jmeter interface testing的实例

    目标:测试某个保险系统的费率接口 准备:a 请求方式:Http b 接口地址://10.1.1.223:9090/rulesEngine/executeRateRule.do Jmeter 设置: a ...

  4. 分布式锁之三:mysql实现-待整理

    下面我们来看下开源dubbo推荐的业界成熟的zookeeper做为注册中心, zookeeper是hadoop的一个子项目是分布式系统的可靠协调者,他提供了配置维护,名字服务,分布式同步等服务.对于z ...

  5. selenium中Xpath轴定位方法

    1.Xpath轴:轴可定义相对于当前节点的节点集. 使用语法:轴名称::节点名称 例://input[@data-value="SXRYNAME"]/parent::td/foll ...

  6. print 函数用法总结

    1. 字符串和数值类型 >>> print(1) 1 >>> print("Hello World") Hello World 2.变量无论什么 ...

  7. 进程之 Process join方法其他属性与进程Queue

    Process join方法 以及其他属性 在主进程运行过程中如果想并发地执行其他的任务,我们可以开启子进程,此时主进程的任务与子进程的任务分两种情况 情况一:在主进程的任务与子进程的任务彼此独立的情 ...

  8. js实现可拖动的布局

    思路:采用flex布局,js即时修改固定列的宽度 注意:父元素需设置position:relative:因offsetLeft和offsetTop是相对于具有定位的(position:absolute ...

  9. 从excel、txt、dict中取data,预期值

    一:从excel中取data excel中放入预期值,上报data数据 excel中第一行是data数据,第二行是预期值 在每个class中,取data数据上报到接口中,具体代码如下: def get ...

  10. Playbooks 中的错误处理

    Topics Playbooks 中的错误处理 忽略错误的命令 控制对失败的定义 覆写更改结果 Ansible 通常默认会确保检测模块和命令的返回码并且会快速失败 – 专注于一个错误除非你另作打算. ...