Deep Visual-Semantic Alignments for Generating Image Descriptions(深度视觉-语义对应对于生成图像描述)
https://cs.stanford.edu/people/karpathy/deepimagesent/
Abstract
We present a model that generates natural language descriptions of images and their regions. Our approach leverages datasets of images and their sentence descriptions to learn about the inter-modal correspondences between language and visual data. Our alignment model is based on a novel combination of Convolutional Neural Networks over image regions, bidirectional Recurrent Neural Networks over sentences, and a structured objective that aligns the two modalities through a multimodal embedding. We then describe a Multimodal Recurrent Neural Network architecture that uses the inferred alignments to learn to generate novel descriptions of image regions. We demonstrate that our alignment model produces state of the art results in retrieval experiments on Flickr8K, Flickr30K and MSCOCO datasets. We then show that the generated descriptions significantly outperform retrieval baselines on both full images and on a new dataset of region-level annotations.
我们展示了一个模型,它能生成图像和它们区域的自然语言描述。我们的方法杠杆平衡图像集与它们的句子描述,以学习语言和视觉数据之间内在模态的关系。我们的对齐模型是基于一种新的结合,图像区域的卷积神经网络,句子的双向递归神经网络,和通过多模态嵌入对齐两种模式的结构化目标。然后,我们描述了一种多模式递归神经网络架构,它是使用推断对齐方法来学习生成图像区域的新描述。我们证明我们的对齐模型在FLICKR8K、FLIKR30K和MSCCOO数据集的检索实验中产生最先进的结果。然后,我们表示,生成的描述显著地胜过无论是全图还是新的区域水平标注数据集的检索基线。
1. Introduction简介
A quick glance at an image is sufficient for a human to point out and describe an immense amount of details about the visual scene [14]. However, this remarkable ability has proven to be an elusive task for our visual recognition models. The majority of previous work in visual recognition has focused on labeling images with a fixed set of visual categories and great progress has been achieved in these endeavors [45, 11]. However, while closed vocabularies of visual concepts constitute a convenient modeling assumption, they are vastly restrictive when compared to the enormous amount of rich descriptions that a human can compose.
对人类来说快速地看一眼图片并指出并描述视觉场景的详细细节是足够的。但是,这个杰出的能力已证明对视觉识别模型来说是一个难以捉摸的任务。
Some pioneering approaches that address the challenge of generating image descriptions have been developed [29,13]. However, these models often rely on hard-coded visual concepts and sentence templates, which imposes limits on their variety. Moreover, the focus of these works has been on reducing complex visual scenes into a single sentence, which we consider to be an unnecessary restriction.
In this work, we strive to take a step towards the goal of generating dense descriptions of images (Figure 1). The primary challenge towards this goal is in the design of a model that is rich enough to simultaneously reason about contents of images and their representation in the domain of natural language. Additionally, the model should be free of assumptions about specific hard-coded templates, rules or categories and instead rely on learning from the training data. The second, practical challenge is that datasets of image captions are available in large quantities on the internet[21, 58, 37], but these descriptions multiplex mentions of several entities whose locations in the images are unknown.

Deep Visual-Semantic Alignments for Generating Image Descriptions(深度视觉-语义对应对于生成图像描述)的更多相关文章
- Paper Reading - Deep Visual-Semantic Alignments for Generating Image Descriptions ( CVPR 2015 )
Link of the Paper: https://arxiv.org/abs/1412.2306 Main Points: An Alignment Model: Convolutional Ne ...
- 论文笔记:Visual Semantic Navigation Using Scene Priors
Visual Semantic Navigation Using Scene Priors 2018-10-21 19:39:26 Paper: https://arxiv.org/pdf/1810 ...
- 论文:利用深度强化学习模型定位新物体(VISUAL SEMANTIC NAVIGATION USING SCENE PRIORS)
这是一篇被ICLR 2019 接收的论文.论文讨论了如何利用场景先验知识 (scene priors)来定位一个新场景(novel scene)中未曾见过的物体(unseen objects).举例来 ...
- 论文笔记之:Pedestrian Detection aided by Deep Learning Semantic Tasks
Pedestrian Detection aided by Deep Learning Semantic Tasks CVPR 2015 本文考虑将语义任务(即:行人属性和场景属性)和行人检测相结合, ...
- 论文笔记:Improving Deep Visual Representation for Person Re-identification by Global and Local Image-language Association
Improving Deep Visual Representation for Person Re-identification by Global and Local Image-language ...
- DSSM(DEEP STRUCTURED SEMANTIC MODELS)
Huang, Po-Sen, et al. "Learning deep structured semantic models for web search using clickthrou ...
- Deep Learning 8_深度学习UFLDL教程:Stacked Autocoders and Implement deep networks for digit classification_Exercise(斯坦福大学深度学习教程)
前言 1.理论知识:UFLDL教程.Deep learning:十六(deep networks) 2.实验环境:win7, matlab2015b,16G内存,2T硬盘 3.实验内容:Exercis ...
- Deep Learning 学习随记(五)深度网络--续
前面记到了深度网络这一章.当时觉得练习应该挺简单的,用不了多少时间,结果训练时间真够长的...途中debug的时候还手贱的clear了一下,又得从头开始运行.不过最终还是调试成功了,sigh~ 前一篇 ...
- 【ML】Predict and Constrain: Modeling Cardinality in Deep Structured Prediction -预测和约束:在深度结构化预测中建模基数
[论文标题]Predict and Constrain: Modeling Cardinality in Deep Structured Prediction (35th-ICML,PMLR) [ ...
随机推荐
- nginx 安装echo模块
学习资源: https://www.cnblogs.com/xwupiaomiao/p/7997938.html https://blog.csdn.net/hb1707/article/detail ...
- FPGA噪声干扰
在FPGA高速AD采集设计中,PCB布线差会产生干扰.今天小编为大家介绍一些布线解决方案. 1.信号线的等长 以SDRAM或者DDRII为例,数据线,命令线,地址线以及时钟线最好等长,误差不要超过50 ...
- pt工具之pt-archiver
# tar -zxvf percona-toolkit-2.2.17.tar.gz# yum -y install perl perl-IO-Socket-SSL perl-DBD-MySQL per ...
- Linux的启动级别
一.启动级别 1.查看linux 系统默认启动级别cat /etc/inittab id:3:initdefault: ##可以看出默认为三 2.查看某一服务在各个启动级别上是否启动[root@loc ...
- 使用模板创建第一个Web API项目
软件环境 vs 2015 update3 本节将通过例子讲述创建Web API 项目的方法 第一步,打开vs ,依次通过[文件]菜单,[新建][项目]命令,大致步骤如下图 : 第2步,在弹出对话框 ...
- Wireshark捕获非加密的数据包
启动监听模式 root@sch01ar:~# airmon-ng start wlan0 启动Wireshark工具 root@sch01ar:~# wireshark 选择接口,这里选择wlan0m ...
- 2014.8.27 Vs2005宏的使用
终于知道怎么像在Word里那样使用宏了! 1.vs2005必须装补丁1 2.在C:\Program Files (x86)\Common Files\microsoft shared\VSA\8.0\ ...
- Python可执行对象——exec、eval、compile
Python提供的调用可执行对象的内建函数进行说明,涉及exec.eval.compile三个函数.exec语句用来执行存储在代码对象.字符串.文件中的Python语句,eval语句用来计算存储在代码 ...
- WEB前端必备掌握知识
1.跨域: 跨域问题是由于javascript语言安全限制中的同源策略造成的.
- [原创]Spring JdbcTemplate 使用总结与经验分享
引言 近期开发的几个项目,均是基于Spring boot框架的web后端项目,使用JdbcTemplate执行数据库操作,实际开发过程中,掌握了一些有效的开发经验,踩过一些坑,在此做个记录及总结,与各 ...