https://cs.stanford.edu/people/karpathy/deepimagesent/

Abstract

We present a model that generates natural language descriptions of images and their regions. Our approach leverages datasets of images and their sentence descriptions to learn about the inter-modal correspondences between language and visual data. Our alignment model is based on a novel combination of Convolutional Neural Networks over image regions, bidirectional Recurrent Neural Networks over sentences, and a structured objective that aligns the two modalities through a multimodal embedding. We then describe a Multimodal Recurrent Neural Network architecture that uses the inferred alignments to learn to generate novel descriptions of image regions. We demonstrate that our alignment model produces state of the art results in retrieval experiments on Flickr8K, Flickr30K and MSCOCO datasets. We then show that the generated descriptions significantly outperform retrieval baselines on both full images and on a new dataset of region-level annotations.

我们展示了一个模型,它能生成图像和它们区域的自然语言描述。我们的方法杠杆平衡图像集与它们的句子描述,以学习语言和视觉数据之间内在模态的关系。我们的对齐模型是基于一种新的结合,图像区域的卷积神经网络,句子的双向递归神经网络,和通过多模态嵌入对齐两种模式的结构化目标。然后,我们描述了一种多模式递归神经网络架构,它是使用推断对齐方法来学习生成图像区域的新描述。我们证明我们的对齐模型在FLICKR8K、FLIKR30K和MSCCOO数据集的检索实验中产生最先进的结果。然后,我们表示,生成的描述显著地胜过无论是全图还是新的区域水平标注数据集的检索基线。

Code:链接 其他

1. Introduction简介

A quick glance at an image is sufficient for a human to point out and describe an immense amount of details about the visual scene [14]. However, this remarkable ability has proven to be an elusive task for our visual recognition models. The majority of previous work in visual recognition has focused on labeling images with a fixed set of visual categories and great progress has been achieved in these endeavors [45, 11]. However, while closed vocabularies of visual concepts constitute a convenient modeling assumption, they are vastly restrictive when compared to the enormous amount of rich descriptions that a human can compose.

对人类来说快速地看一眼图片并指出并描述视觉场景的详细细节是足够的。但是,这个杰出的能力已证明对视觉识别模型来说是一个难以捉摸的任务。

Some pioneering approaches that address the challenge of generating image descriptions have been developed [29,13]. However, these models often rely on hard-coded visual concepts and sentence templates, which imposes limits on their variety. Moreover, the focus of these works has been on reducing complex visual scenes into a single sentence, which we consider to be an unnecessary restriction.

In this work, we strive to take a step towards the goal of  generating dense descriptions of images (Figure 1). The primary challenge towards this goal is in the design of a model that is rich enough to simultaneously reason about contents of images and their representation in the domain of natural language. Additionally, the model should be free of assumptions about specific hard-coded templates, rules or categories and instead rely on learning from the training data. The second, practical challenge is that datasets of image captions are available in large quantities on the internet[21, 58, 37], but these descriptions multiplex mentions of several entities whose locations in the images are unknown.

Deep Visual-Semantic Alignments for Generating Image Descriptions(深度视觉-语义对应对于生成图像描述)的更多相关文章

  1. Paper Reading - Deep Visual-Semantic Alignments for Generating Image Descriptions ( CVPR 2015 )

    Link of the Paper: https://arxiv.org/abs/1412.2306 Main Points: An Alignment Model: Convolutional Ne ...

  2. 论文笔记:Visual Semantic Navigation Using Scene Priors

    Visual Semantic Navigation Using Scene Priors 2018-10-21 19:39:26 Paper:  https://arxiv.org/pdf/1810 ...

  3. 论文:利用深度强化学习模型定位新物体(VISUAL SEMANTIC NAVIGATION USING SCENE PRIORS)

    这是一篇被ICLR 2019 接收的论文.论文讨论了如何利用场景先验知识 (scene priors)来定位一个新场景(novel scene)中未曾见过的物体(unseen objects).举例来 ...

  4. 论文笔记之:Pedestrian Detection aided by Deep Learning Semantic Tasks

    Pedestrian Detection aided by Deep Learning Semantic Tasks CVPR 2015 本文考虑将语义任务(即:行人属性和场景属性)和行人检测相结合, ...

  5. 论文笔记:Improving Deep Visual Representation for Person Re-identification by Global and Local Image-language Association

    Improving Deep Visual Representation for Person Re-identification by Global and Local Image-language ...

  6. DSSM(DEEP STRUCTURED SEMANTIC MODELS)

    Huang, Po-Sen, et al. "Learning deep structured semantic models for web search using clickthrou ...

  7. Deep Learning 8_深度学习UFLDL教程:Stacked Autocoders and Implement deep networks for digit classification_Exercise(斯坦福大学深度学习教程)

    前言 1.理论知识:UFLDL教程.Deep learning:十六(deep networks) 2.实验环境:win7, matlab2015b,16G内存,2T硬盘 3.实验内容:Exercis ...

  8. Deep Learning 学习随记(五)深度网络--续

    前面记到了深度网络这一章.当时觉得练习应该挺简单的,用不了多少时间,结果训练时间真够长的...途中debug的时候还手贱的clear了一下,又得从头开始运行.不过最终还是调试成功了,sigh~ 前一篇 ...

  9. 【ML】Predict and Constrain: Modeling Cardinality in Deep Structured Prediction -预测和约束:在深度结构化预测中建模基数

    [论文标题]Predict and Constrain: Modeling Cardinality in Deep Structured Prediction   (35th-ICML,PMLR) [ ...

随机推荐

  1. 利用全局变量$_SESSION和register_shutdown_function自定义会话处理

    register_shutdown_function 可以注册一个自定义的函数,在程序运行结束之前 执行. 在做ecshop的二次开发过程中,虽然代码 太老太乱太冗余,但ec的会话处理的设计感觉还是不 ...

  2. 平台调用之如何利用VS2013 C#调试C++DLL库

    对于托管代码调用非托管DLL文件,已经是非常普遍的事情,下面写一下如何通过托管代码(C#)像调试托管代码一样调试DLL中的代码. 注意:(1)[dll工程和调用dll的exe工程需要在同一个解决方案中 ...

  3. iPhone之IOS5内存管理(ARC技术概述)

    ARC(Automatic Reference Counting )技术概述 此文章由Tom翻译,首发于csdn的blog,任何人都可以转发,但是请保留原始链接和翻译者得名字.多谢! Automati ...

  4. 【转】使用JMeter进行负载测试——终极指南

    使用JMeter进行负载测试——终极指南 这篇教程讨论的是JMeter,它是一款基于Java的.集合了几个应用程序.具有特定用途的负载和性能测试工具. 本篇主要涉及的内容: 解释一下JMeter的用途 ...

  5. Python多线程-生产者消费者模型

    用多线程和队列来实现生产者消费者模型 # -*- coding:utf-8 -*- __author__ = "MuT6 Sch01aR" import threading imp ...

  6. PHP函数(一)-变量

    1.全局变量 <?php $a = 1; $b = 2; function test(){ echo $a + $b."<br>"; //运行结果为0 } tes ...

  7. Command对象

  8. 14-jQuery的ajax

    什么是ajax AJAX  =  异步的JavaScript 和 XML (Asynchronous Javascript and XML) 简言之,在不重载整个网页的情况下,AJAX通过后台加载数据 ...

  9. 【知识结构】最强Thymeleaf知识体系

    在开发一个小项目的时候,使用的是Spring Boot,Spring Boot 官方推荐的前端模板是thymeleaf, 花了两天时间将官方的文档看完并总结了下知识体系结构.转载请注明出处,https ...

  10. IE6的checkbox, radio是通过defaultChecked决定是否选中

    今天五群提到的BUG,说checked没有生效,一番百度谷歌,发现是它作怪. data.handler = function() { //IE6是通过defaultChecked来实现打勾效果 ele ...