https://cs.stanford.edu/people/karpathy/deepimagesent/

Abstract

We present a model that generates natural language descriptions of images and their regions. Our approach leverages datasets of images and their sentence descriptions to learn about the inter-modal correspondences between language and visual data. Our alignment model is based on a novel combination of Convolutional Neural Networks over image regions, bidirectional Recurrent Neural Networks over sentences, and a structured objective that aligns the two modalities through a multimodal embedding. We then describe a Multimodal Recurrent Neural Network architecture that uses the inferred alignments to learn to generate novel descriptions of image regions. We demonstrate that our alignment model produces state of the art results in retrieval experiments on Flickr8K, Flickr30K and MSCOCO datasets. We then show that the generated descriptions significantly outperform retrieval baselines on both full images and on a new dataset of region-level annotations.

我们展示了一个模型,它能生成图像和它们区域的自然语言描述。我们的方法杠杆平衡图像集与它们的句子描述,以学习语言和视觉数据之间内在模态的关系。我们的对齐模型是基于一种新的结合,图像区域的卷积神经网络,句子的双向递归神经网络,和通过多模态嵌入对齐两种模式的结构化目标。然后,我们描述了一种多模式递归神经网络架构,它是使用推断对齐方法来学习生成图像区域的新描述。我们证明我们的对齐模型在FLICKR8K、FLIKR30K和MSCCOO数据集的检索实验中产生最先进的结果。然后,我们表示,生成的描述显著地胜过无论是全图还是新的区域水平标注数据集的检索基线。

Code:链接 其他

1. Introduction简介

A quick glance at an image is sufficient for a human to point out and describe an immense amount of details about the visual scene [14]. However, this remarkable ability has proven to be an elusive task for our visual recognition models. The majority of previous work in visual recognition has focused on labeling images with a fixed set of visual categories and great progress has been achieved in these endeavors [45, 11]. However, while closed vocabularies of visual concepts constitute a convenient modeling assumption, they are vastly restrictive when compared to the enormous amount of rich descriptions that a human can compose.

对人类来说快速地看一眼图片并指出并描述视觉场景的详细细节是足够的。但是,这个杰出的能力已证明对视觉识别模型来说是一个难以捉摸的任务。

Some pioneering approaches that address the challenge of generating image descriptions have been developed [29,13]. However, these models often rely on hard-coded visual concepts and sentence templates, which imposes limits on their variety. Moreover, the focus of these works has been on reducing complex visual scenes into a single sentence, which we consider to be an unnecessary restriction.

In this work, we strive to take a step towards the goal of  generating dense descriptions of images (Figure 1). The primary challenge towards this goal is in the design of a model that is rich enough to simultaneously reason about contents of images and their representation in the domain of natural language. Additionally, the model should be free of assumptions about specific hard-coded templates, rules or categories and instead rely on learning from the training data. The second, practical challenge is that datasets of image captions are available in large quantities on the internet[21, 58, 37], but these descriptions multiplex mentions of several entities whose locations in the images are unknown.

Deep Visual-Semantic Alignments for Generating Image Descriptions(深度视觉-语义对应对于生成图像描述)的更多相关文章

  1. Paper Reading - Deep Visual-Semantic Alignments for Generating Image Descriptions ( CVPR 2015 )

    Link of the Paper: https://arxiv.org/abs/1412.2306 Main Points: An Alignment Model: Convolutional Ne ...

  2. 论文笔记:Visual Semantic Navigation Using Scene Priors

    Visual Semantic Navigation Using Scene Priors 2018-10-21 19:39:26 Paper:  https://arxiv.org/pdf/1810 ...

  3. 论文:利用深度强化学习模型定位新物体(VISUAL SEMANTIC NAVIGATION USING SCENE PRIORS)

    这是一篇被ICLR 2019 接收的论文.论文讨论了如何利用场景先验知识 (scene priors)来定位一个新场景(novel scene)中未曾见过的物体(unseen objects).举例来 ...

  4. 论文笔记之:Pedestrian Detection aided by Deep Learning Semantic Tasks

    Pedestrian Detection aided by Deep Learning Semantic Tasks CVPR 2015 本文考虑将语义任务(即:行人属性和场景属性)和行人检测相结合, ...

  5. 论文笔记:Improving Deep Visual Representation for Person Re-identification by Global and Local Image-language Association

    Improving Deep Visual Representation for Person Re-identification by Global and Local Image-language ...

  6. DSSM(DEEP STRUCTURED SEMANTIC MODELS)

    Huang, Po-Sen, et al. "Learning deep structured semantic models for web search using clickthrou ...

  7. Deep Learning 8_深度学习UFLDL教程:Stacked Autocoders and Implement deep networks for digit classification_Exercise(斯坦福大学深度学习教程)

    前言 1.理论知识:UFLDL教程.Deep learning:十六(deep networks) 2.实验环境:win7, matlab2015b,16G内存,2T硬盘 3.实验内容:Exercis ...

  8. Deep Learning 学习随记(五)深度网络--续

    前面记到了深度网络这一章.当时觉得练习应该挺简单的,用不了多少时间,结果训练时间真够长的...途中debug的时候还手贱的clear了一下,又得从头开始运行.不过最终还是调试成功了,sigh~ 前一篇 ...

  9. 【ML】Predict and Constrain: Modeling Cardinality in Deep Structured Prediction -预测和约束:在深度结构化预测中建模基数

    [论文标题]Predict and Constrain: Modeling Cardinality in Deep Structured Prediction   (35th-ICML,PMLR) [ ...

随机推荐

  1. Go入门教程

    本人录制的Go入门视频 20小时快速入门go语言视频:https://pan.baidu.com/s/1jJPsThk 基础编程 01.Go语言介绍02.环境搭建03.第一个Go程序 04.命名.变量 ...

  2. Linux I/O 映射(ioremap)和writel/readl

    在裸奔代码中,如果要控制gpio,直接控制gpio寄存器地址即可: 在linux系统中,所有操作的地址都是虚拟地址,都是由linux内核去管理,所以需要将物理地址转换成内核可识别的虚拟地址. 1.io ...

  3. linux 系统创建软连接

    ln -s /data/var/ /usr/local/smokeping/var 需求:/var/本身在/usr/local/smokeping/var下,想要把/usr/local/smokepi ...

  4. mysql的账号管理

    mysql的账号管理 最先匹配 user 表(包含:用户列 权限列 安全列 资源控制列)连接判断:host  user password字段(user的授权是全局的): 然后匹配db表:如果只是给指定 ...

  5. CentOS7上部署https

    目前很多浏览器都加强了html都安全性,要求配置https. 下面都例子是在CentOS7上的Apache配置https都过程. 一.生成证书 用OpenSSL生成key和证书: mkdir /etc ...

  6. Firewalld常用命令

    原文地址:http://www.excelib.com/article/288/show Firewalld防火墙中所使用到的命令可以分为三大类:安装卸载.维护和策略操作. 安装 在Centos7中默 ...

  7. python开发mysql:视图、触发器、事务、存储过程、函数

    一 视图 视图是一个虚拟表(非真实存在),其本质是[根据SQL语句获取动态的数据集,并为其命名],用户使用时只需使用[名称]即可获取结果集,可以将该结果集当做表来使用. 使用视图我们可以把查询过程中的 ...

  8. 【OpenCV函数】轮廓提取;轮廓绘制;轮廓面积;外接矩形

    FindContours 在二值图像中寻找轮廓  int cvFindContours( CvArr* image, CvMemStorage* storage, CvSeq** first_cont ...

  9. 关于Unity发布iOS平台代码混淆问题

    之前在越狱手机里找到<永恒战士3>的程序发现是用Unity做的,拷出资源出来看的时候发现里面有游戏程序集,立马抽出来反编译了一下,发现里面的代码只有方法签名,没有方法体,还以为用什么高端混 ...

  10. MVC 公共类App_Code不识别

    .Net MVC需要写公共类的时候 右击添加 App_Code 文件夹,新建类—>右击类—>属性,生成操作 —>选择 —>编译 .net MVC项目本身是个应用程序,所以其实不 ...