【luogu P1004 方格取数】 题解
题目链接:https://www.luogu.org/problemnew/show/P1004
标准的DP,不明白为什么有普及+提高的难度
四维DP[i][j][k][l] 表示第一遍走到i,j格子,第二遍走到k,l格子
状态转移方程:max(dp[i-1][j][k-1][l],dp[i-1][j][k][l-1],dp[i][j-1][k-1][l],dp[i][j-1][k][l-1]
每走一步要加上当前格子的数g[i][j]+g[k][l]
注意如果 当i==k&&j==l的时候也就是说两个格子是一起的话只能取一个数,所以特判一下再减去一个格子的数就OK
#include <iostream>
#include <cstdio>
#include <algorithm>
using namespace std;
int n, dp[][][][], g[][];
int main()
{
int x, y, z;
scanf("%d",&n);
while()
{
scanf("%d%d%d", &x, &y, &z);
if(x == && y == && z == )
break;
g[x][y] = z;
}
for(int i = ; i <= n; i++)
for(int j = ; j <= n; j++)
for(int k = ; k <= n; k++)
for(int l = ; l <= n; l++)
{
dp[i][j][k][l]=max(max(dp[i-][j][k-][l],dp[i-][j][k][l-]),max(dp[i][j-][k-][l],dp[i][j-][k][l-]))+g[i][j]+g[k][l];
if(i==k&&l==j) dp[i][j][k][l]-=g[i][j];
}
printf("%d",dp[n][n][n][n]);
}
【luogu P1004 方格取数】 题解的更多相关文章
- 洛谷 P1004 方格取数 题解
P1004 方格取数 题目描述 设有 \(N \times N\) 的方格图 \((N \le 9)\),我们将其中的某些方格中填入正整数,而其他的方格中则放入数字\(0\).如下图所示(见样例): ...
- LuoGu P1004 方格取数
题目传送门 一开始这个题我是不会的(沙华弱DP啊QwQ),后来考完试我一想,这东西怎么和数字三角形那题这么像啊? 都是自上而下,只能向下或者向右,求一个max 那么...这不就是个走两遍的数字矩阵嘛 ...
- [动态规划]P1004 方格取数
---恢复内容开始--- 题目描述 设有N*N的方格图(N<=9),我们将其中的某些方格中填入正整数,而其他的方格中则放 人数字0.如下图所示(见样例): A 0 0 0 0 0 0 0 0 0 ...
- Libre 6007 「网络流 24 题」方格取数 / Luogu 2774 方格取数问题 (网络流,最大流)
Libre 6007 「网络流 24 题」方格取数 / Luogu 2774 方格取数问题 (网络流,最大流) Description 在一个有 m*n 个方格的棋盘中,每个方格中有一个正整数.现要从 ...
- 棋盘DP三连——洛谷 P1004 方格取数 &&洛谷 P1006 传纸条 &&Codevs 2853 方格游戏
P1004 方格取数 题目描述 设有N $\times N$N×N的方格图(N $\le 9$)(N≤9),我们将其中的某些方格中填入正整数,而其他的方格中则放入数字00.如下图所示(见样例): A ...
- P1004 方格取数(四维dp)
P1004 方格取数 思路如下 这题是看洛谷大佬的思路才写出来的,所以我会把大佬的思路展示如下: 1⃣️:我们可以找到一个叫思维dp的东西,dp[i][j][k][l],其中前两维表示一个人从原点出发 ...
- P1004 方格取数——奇怪的dp
P1004 方格取数 题目描述 设有 \(N\times N\) 的方格图 \((N\leq 20)\),我们将其中的某些方格中填入正整数,而其他的方格中则放入数字 \(0\) .如下图所示(见样例) ...
- 洛谷 P1004 方格取数 【多进程dp】
题目链接:https://www.luogu.org/problemnew/show/P1004 题目描述 设有N*N的方格图(N<=9),我们将其中的某些方格中填入正整数,而其他的方格中则放 ...
- 洛谷P1004 方格取数
网络流大法吼 不想用DP的我选择了用网络流-- 建模方法: 从源点向(1,1)连一条容量为2(走两次),费用为0的边 从(n,n)向汇点连一条容量为2,费用为0的边 每个方格向右边和下边的方格连一条容 ...
随机推荐
- (Frontend Newbie)Web三要素(二)
上一篇简单介绍了HTML的基本知识以及一些在开发学习过程中容易忽视的知识点,本篇介绍Web三要素中另一个重要组成部分----层叠样式表(Cascading Style Sheets). CSS 按照一 ...
- 每日一问:Python生成器和迭代器,with上下文管理工具
1.生成器: 1.1 起源: 如果列表中有一万个元素,我们只想要访问前面几个元素,对其进行相关操作,通过for循环方式效率太低,并且后面的元素会浪费内存,还会受到内存限制,所以产生生成器来解决这个问题 ...
- Linux VFS机制简析(一)
Linux VFS机制简析(一) 本文主要基于Linux内核文档,简单分析Linux VFS机制,以期对编写新的内核文件系统(通常是给分布式文件系统编写内核客户端)的场景有所帮助. 个人渊源 切入正文 ...
- 对key中有数字的字典进行排序
word_cloud = []cc = [{"c58":341,"c59":525,"c56":507,"c57":34 ...
- Java集合一
java的集合类主要由两个接口派生而出:Collection && Map 这两个接口是集合框架的根接口 Collection----直接派生:Set(无序集合,元素不可重复) Lis ...
- 04.Dictionary字典键值对集合
Dictionary字典键值对集合和Hashtable键值对集合的功能非常类似, 只是在声明的时候,必须为其制定值的类型. 示例代码: namespace _11.Dictionary字典集合的学习 ...
- 洛谷P2312 解方程(暴力)
题意 题目链接 Sol 出这种题会被婊死的吧... 首先不难想到暴力判断,然后发现连读入都是个问题. 对于\(a[i]\)取模之后再判断就行了.注意判断可能会出现误差,可以多找几个模数 #includ ...
- File I/O 小结
1 .I/0: input/output 2.java.io.File 3 .表示:文件或者文件夹(目录) 4. File f = new File("文件路径"); 5 .注意: ...
- C#程序的编译和执行
1.在讲解 C# 程序的编译与执行之前,首先了解以下两个概念,以便充分理解C# 程序的运行. CLI--Common Language Infrastructure 的简称,C# 程序在Microso ...
- js:JSON对象与JSON字符串转换
JSON(JavaScript Object Notation) 是一种轻量级的数据交换格式,采用完全独立于语言的文本格式,是理想的数据交换格式. 同时,JSON是 JavaScript 原生格式,这 ...