【NOI2008】假面舞会(图论,搜索)
题面
Description
一年一度的假面舞会又开始了,栋栋也兴致勃勃的参加了今年的舞会。今年的面具都是主办方特别定制的。每个参加舞会的人都可以在入场时选择一个自己喜欢的面 具。每个面具都有一个编号,主办方会把此编号告诉拿该面具的人。为了使舞会更有神秘感,主办方把面具分为k (k≥3)类,并使用特殊的技术将每个面具的编号标在了面具上,只有戴第i 类面具的人才能看到戴第i+1 类面具的人的编号,戴第k 类面具的人能看到戴第1 类面具的人的编号。
参加舞会的人并不知道有多少类面具,但是栋栋对此却特别好奇,他想自己算出有多少类面具,于是他开始在人群中收集信息。
栋栋收集的信息都是戴第几号面具的人看到了第几号面具的编号。如戴第2号面具的人看到了第5 号面具。栋栋自己也会看到一些编号,他也会根据自己的面具编号把信息补充进去。由于并不是每个人都能记住自己所看到的全部编号,因此,栋栋收集的信 息不能保证其完整性。现在请你计算,按照栋栋目前得到的信息,至多和至少有多少类面具。由于主办方已经声明了k≥3,所以你必须将这条信息也考虑进去。
Input
输入第一行包含两个整数n, m,用一个空格分隔,n 表示主办方总共准备了多少个面具,m 表示栋栋收集了多少条信息。
接下来m 行,每行为两个用空格分开的整数a, b,表示戴第a 号面具的人看到了第b 号面具。相同的数对a, b 在输入文件中可能出现多次。
Output
输出包含两个数,第一个数为最大可能的面具类数,第二个数为最小可能的面具类数。如果无法将所有的面具分为至少3 类,使得这些信息都满足,则认为栋栋收集的信息有错误,输出两个-1。
Sample Input
样例1:
6 5
1 2
2 3
3 4
4 1
3 5
样例2:
3 3
1 2
2 1
2 3
Sample Output
样例1:
4 4
样例2:
-1 -1
Hint
数据范围:
50%的数据,满足n ≤ 300, m ≤ 1000;
100%的数据,满足n ≤ 100000, m ≤ 1000000。
题解
orz QT666
出题直接出这种原题。。
考场各种yy,搞出了70分。。。
不乱说了,回归正题。
归结一下题意:
给定一张图,每个点有一个编号\(1..k\)
给定若干条边
边一定是从编号\(i\)连向编号\(i+1\),
且编号\(K\)连向编号\(1\)
求K的最大最小可能值
因为边是单向,其实,图一共就几种情况:
\(1\).环
若干个节点首位相连,那么答案一定是当前环的长度的一个因数。
\(2.\)伪环
这个的处理和环是类似的,等下一起讲。
伪环的形式大概是:
1---->2---->3---->4------
| |
| ↓
----------------------->5
\(3.\)链
如果不存在环或者伪环,
那么,最大的\(K\)值一定就是所有的链长之和
你可以想象为若干链,然后把链首位相连,然后从1开始编号
接下来考虑如何处理环和伪环
对于伪环,我们可以考虑是一个边向回走,
然后对应的编号再减少,
因此,存边的时候,正边边权为\(1\),反边边权为\(-1\)
于是伪环也可以变成正环处理。
继续想,怎么计算答案,
因为最终的答案就是所有环的大小\(gcd\),
求环的大小就是一遍\(DFS\)
而环的大小的求法也不难,
首先给每个节点依次记录从出发点开始的距离
如果当前点被第二次访问过,
那么,环的大小就是 \(|dis-dis'|\)
而链的长度则是当前\(DFS\)出的最大的距离减去最小的距离
问题差不多解决了,关于\(k≥3\)的限制分类讨论即可。
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define MAX 110000
inline int read()
{
int x=0,t=1;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
struct Line
{
int v,next;
}e[MAX*20];
int h[MAX],cnt=0,n,m;
int M1,M2,M;
bool vis[MAX];
int ans=0,dfn[MAX];
inline void Add(int u,int v)
{
e[cnt]=(Line){v,h[u]};
h[u]=cnt++;
}
int gcd(int a,int b)
{
return !a?b:gcd(b%a,a);
}
void DFS(int u,int w)
{
dfn[u]=w;vis[u]=true;
M1=min(M1,w);M2=max(M2,w);
for(int i=h[u];i!=-1;i=e[i].next)
{
int v=e[i].v,ww=w+((i&1)?-1:1);
if(!vis[v])
{
DFS(v,ww);
}
else
ans=gcd(ans,abs(dfn[v]-ww));
}
}
int main()
{
memset(h,-1,sizeof(h));
n=read();m=read();
for(int i=1;i<=m;++i)
{
int u=read(),v=read();
Add(u,v);Add(v,u);
}
for(int i=1;i<=n;++i)
if(!vis[i])
{
DFS(i,0);
M+=M2-M1+1;
M2=M1=0;
}
if(ans>=3)
{
printf("%d ",ans);
for(int i=3;i<=ans;++i)
if(ans%i==0)
{
printf("%d\n",i);
return 0;
}
}
if(ans==0&&M>=3)
{
printf("%d 3\n",M);
return 0;
}
puts("-1 -1");
return 0;
}
【NOI2008】假面舞会(图论,搜索)的更多相关文章
- BZOJ1064 NOI2008 假面舞会 图论
传送门 将一组关系\((A,B)\)之间连一条边,那么显然如果图中存在环长为\(len\)的环,那么面具的种数一定是\(len\)的因数. 值得注意的是这里环的关系除了\(A \rightarrow ...
- [NOI2008]假面舞会 (搜索+gcd)
题意 LuoguP1477 题解 对于每一条边(u,v)(u,v)(u,v),建两条边(u→v,1),(v→u,−1)(u\to v,1),(v\to u,-1)(u→v,1),(v→u,−1).跑b ...
- 图论 公约数 找环和链 BZOJ [NOI2008 假面舞会]
BZOJ 1064: [Noi2008]假面舞会 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1655 Solved: 798[Submit][S ...
- 【洛谷】1477:[NOI2008]假面舞会【图论】
P1477 [NOI2008]假面舞会 题目描述 一年一度的假面舞会又开始了,栋栋也兴致勃勃的参加了今年的舞会. 今年的面具都是主办方特别定制的.每个参加舞会的人都可以在入场时选择一 个自己喜欢的面具 ...
- [BZOJ1064][Noi2008]假面舞会
[BZOJ1064][Noi2008]假面舞会 试题描述 一年一度的假面舞会又开始了,栋栋也兴致勃勃的参加了今年的舞会.今年的面具都是主办方特别定制的.每个参加舞会的人都可以在入场时选择一 个自己喜欢 ...
- NOI2008假面舞会
1064: [Noi2008]假面舞会 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 883 Solved: 462[Submit][Status] ...
- 【BZOJ1064】[Noi2008]假面舞会 DFS树
[BZOJ1064][Noi2008]假面舞会 Description 一年一度的假面舞会又开始了,栋栋也兴致勃勃的参加了今年的舞会.今年的面具都是主办方特别定制的.每个参加舞会的人都可以在入场时选择 ...
- 【做题记录】[NOI2008] 假面舞会—有向图上的环与最长链
luogu 1477 [NOI2008] 假面舞会 容易发现: 如果图中没有环,那么面具种数一定是所有联通块内最长链之和,最少为 \(3\) . 如果有环,则面具种数一定是所有环的大小的最大公约数. ...
- 【图论 搜索】bzoj1064: [Noi2008]假面舞会
做到最后发现还是读题比赛:不过还是很好的图论题的 Description 一年一度的假面舞会又开始了,栋栋也兴致勃勃的参加了今年的舞会.今年的面具都是主办方特别定制的.每个参加舞会的人都可以在入场时选 ...
- 1064: [Noi2008]假面舞会 - BZOJ
Description 一年一度的假面舞会又开始了,栋栋也兴致勃勃的参加了今年的舞会.今年的面具都是主办方特别定制的.每个参加舞会的人都可以在入场时选择一 个自己喜欢的面具.每个面具都有一个编号,主办 ...
随机推荐
- JavaScript使用点滴
JavaScript使用点滴 一.字符串替换的小插曲 遇到一个小插曲,想要把后台返回的字符串输出给前端视图,字符串中包含\n换行,需要使用javascript对其进行替换成<br />. ...
- dedecms文章页调用上一篇和下一篇文章
dedecms文章页调用上一篇和下一篇文章,解析后是链接形式的上下篇 {dede:prenext get='pre'/} {dede:prenext get='next'/}
- codeforces 940D 比赛总结
这次比赛总体还行,但是并没发挥到极致 A题 速度正常 题解 B题 这个题先是没注意时间复杂度,tle了,好不容易优化了没多测几组就交了,很开心的wa了,查了一边发现没特判k,改好后有草率地交了,又wa ...
- web端表格测试用例
表格测试: 表格内容列表排序功能是否正常每一栏的宽度是否足够宽,表格里的文字是否都有折行?是否有因为某一格的内容太多,而将整行的内容拉长?表格是否能左(右)添加(删除)列,表格是否能上(下)添加(删除 ...
- SpringMvc解决Restful中文乱码问题
中文乱码问题解决方式: <!-- 解决中文乱码问题 --> <filter> <filter-name>CharacterEncodingFilter</fi ...
- UVA - 247 Calling Circles Floyd判圈
思路:利用的Floyd判圈,如果i能到j,j也能到i说明i和j在同一个圈里.每个人的名字可用map编号.最后DFS打印答案即可. AC代码 #include <cstdio> #inclu ...
- tox环境安装
ubuntu 下安装tox环境 1.apt-get install pip 2.pip install tox 3.git git clone https://github.com/openstack ...
- sonar + jacoco + mockMvc 模拟session 用户登录 配合SpringSecurity 权限 快速测试代码覆盖率.
遇到mock 测试简直就是神器,特别是要做代码覆盖率,直接测试controller就好了,缺点,虽然可以回滚事务,但是依赖数据库数据,解决,根据SpringBoot ,再建立一个专门跑单元测试的数据库 ...
- 将FTP映射至Windows
在经常使用ftp传输文件的环境中,每次上传和下载文件都需要重新连接然后登录是非常繁琐的一件事情.我们可以将FTP空间映射到本地磁盘空间,免去输入地址以及账号.密码.方便我们日常中文件的上传和下载. 1 ...
- c#获取文件MD5算法
//获取文件MD5算法 private static string GetMD5FromFile(string fileName) { try { FileStream file = new File ...