好久没有刷题了,虽然参加过ACM,但是始终没有融会贯通,没有学个彻底。我干啥都是半吊子,一瓶子不满半瓶子晃荡。
就连简单的Manacher算法我也没有刷过,常常为岁月蹉跎而感到后悔。

问题描述

给定一个字符串s,求最长回文子串。
回文子串的回文指的是abccba这种从前往后读和从后往前读一样。
子串必须连续(比如从i到j,s[i:j]),不是最长子序列(最长回文子序列怎么求?),子序列是可以不连续的。

算法大意

ans[i]表示以字符i为中心的最长回文子串的长度
now表示now+ans[now]取得最大值的那个下标
对于当前字符i,如果i处在以now为中心的回文子串里,那么ans[i]的求法可以参考i关于now的对称点的回文子串长度,也就是ans[now-(i-now)].
例如:1j34now67i9,假设ans[j]=1,那么ans[i]也等于1,因为i和j都处在以now为中心的回文子串里面,它们是对称的。

上面所述即为算法关键,其余情形很容易自己想到。
但是Manacher算法用到了两个技巧

加#号,统一处理

ans[i]中记录的是以i为中心的最长回文子串,如果不作处理,这样只能够检测出长度为奇数的回文子串的最大长度。所以有一个巧妙的预处理。
给定字符串abcc,扩充成#a#b#c#c#。
#a#b#a# 长度为3,以字符为中心的情况
#a#a#a#a# 长度为4,以#为中心的情况
这样奇数偶数统一化处理。

首部加上一个怪异字符$,减少条件判断

如果在for循环中检测两个条件,那是很费事的,效率低。
如何判断一个条件有很多次无效的判断?就看这个条件发挥作用,影响程序分支的次数和进行条件求值的次数。
边界条件判断影响分支的次数很少,但却每次都要进行判断。
通过加上一个终止字符,就能够避免边界条件判断。
在Manacher算法中,要求回文子串同时要防止下标越界。所以直接在开头插入一个\$字符,这样肯定因为失配而终止。

复杂度分析

Manacher算法为线性复杂度,因为从前往后有一个指针一直是单方向运动,没有回溯。
对于数组中的多个指针,如果都是单向运动,尽管它们运动的顺序和步长不同,那也一定是线性复杂度。

代码

#include<stdio.h>
#include<iostream>
using namespace std;
const int N = 110009;
char s[N];
char a[N * 2];
int ans[N * 2];
int now;
int main(){
    freopen("in.txt", "r", stdin);
    while (scanf("%s", s) != -1){
        if (s[0] == 0)continue;
        //#号法预处理
        int j = 0;
        a[j++] = '$';//这样就能少判断一点,不用考虑边界问题了
        for (int i = 0; s[i]; i++){
            a[j++] = '#';
            a[j++] = s[i];
        }
        a[j++] = '#';
        //开始算法主体部分
        now = 1;
        ans[0] = ans[1] = 0;
        for (int i = 2; i < j; i++){
            if (now + ans[now] < i){//如果当前字符不在阴影里,只能自力更生
                int k = i;
                while (a[k] == a[i - (k - i)]) k++;
                ans[i] = k - i - 1;
                now = i;
            }
            else{
                int right = now - (i - now);
                if (right - ans[right]>now - ans[now]){
                    ans[i] = ans[right];
                }
                else{
                    int k = now + ans[now];
                    while (a[k] == a[i - (k - i)])k++;
                    ans[i] = k - i - 1;
                    now = i;
                }
            }
        }
        //寻找答案,这部分可以直接放在求ans的过程中
        int ma = 0;
        for (int i = 1; i < j; i++){
            if (ma < ans[i])ma = ans[i];
        }
        printf("%d\n", ma);
    }
    return 0;
}

最长回文子序列

动态规划:复杂度都是O(n^2)
方法一:
a[i,j]表示s[i,j]之间最长回文子序列。则a[i,j]可以来自a[i+1,j-1],a[i-1,j],a[i,j-1].
方法二:
将s和s反过来得到的字符串求最长公共子序列

HDU3068 回文串 Manacher算法的更多相关文章

  1. 最长回文---hdu3068 (回文串 manacher 算法模板)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3068 题意很清楚:就是求一个串s的子串中最长回文串的长度:这类题用到了manacher算法 #incl ...

  2. luoguP4555 [国家集训队]最长双回文串 manacher算法

    不算很难的一道题吧.... 很容易想到枚举断点,之后需要处理出以$i$为开头的最长回文串的长度和以$i$为结尾的最长回文串的长度 分别记为$L[i]$和$R[i]$ 由于求$R[i]$相当于把$L[i ...

  3. bzoj 2565: 最长双回文串 manacher算法

    2565: 最长双回文串 Time Limit: 20 Sec  Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/problem. ...

  4. 37:密码截取(回文串manacher算法)

    题目描述:Catcher是MCA国的情报员,他工作时发现敌国会用一些对称的密码进行通信,比如像这些ABBA,ABA,A,123321,但是他们有时会在开始或结束时加入一些无关的字符以防止别国破解.比如 ...

  5. 【BZOJ2565】最长双回文串 (Manacher算法)

    题目: BZOJ2565 分析: 首先看到回文串,肯定能想到Manacher算法.下文中字符串\(s\)是输入的字符串\(str\)在Manacher算法中添加了字符'#'后的字符串 (构造方式如下) ...

  6. UESTC-1975弗吉桑(回文串,manacher算法)

    弗吉桑 Time Limit: 3000 MS     Memory Limit: 64 MB Submit Status 弗吉桑是一座横跨清水河大草原的活火山,位于子科技大学主楼东北方约 80km ...

  7. 回文串--Manacher算法(模板)

    用途:在O(n)时间内,求出以每一个点为中心的回文串长度. 首先,有一个非常巧妙的转化.由于回文串长度有可能为奇数也有可能为偶数,说明回文中心不一定在一个字符上.所以要将字符串做如下处理:在每两个字母 ...

  8. Palindrome(最长回文串manacher算法)O(n)

     Palindrome Time Limit:15000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u Submit ...

  9. 九度OJ 1528 最长回文子串 -- Manacher算法

    题目地址:http://ac.jobdu.com/problem.php?pid=1528 题目描述: 回文串就是一个正读和反读都一样的字符串,比如"level"或者"n ...

随机推荐

  1. 线程安全性:num++操作为什么也会出问题?

    线程的安全性可能是非常复杂的,在没有充足同步的情况下,由于多个线程中的操作执行顺序是不可预测的,甚至会产生奇怪的结果(非预期的).下面的Tools工具类的plus方法会使计数加一,为了方便,这里的nu ...

  2. 手把手教从零开始在GitHub上使用Hexo搭建博客教程(三)-使用Travis自动部署Hexo(1)

    前言 前面两篇文章介绍了在github上使用hexo搭建博客的基本环境和hexo相关参数设置等. 基于目前,博客基本上是可以完美运行了. 但是,有一点是不太好,就是源码同步问题,如果在不同的电脑上写文 ...

  3. [C1] 实现 C1FlexGrid 撤销还原功能

    采用设计模式中的"命令模式"实现 C1FlexGrid 的撤销还原功能,那就先从命令模式简单介绍开始吧. 一  命令模式 命令模式属于对象的行为型模式,将一个请求封装为一个对象,从 ...

  4. java抽象类和接口

    面向对象设计过程中重要的一点是如何进行抽象,即把"问题空间"中的元素与"方案空间"中的元素建立理想的一对一的映射关系.抽象类和接口便是抽象过程中的产物.     ...

  5. Python 历遍目录

    Automate the Boring Stuff 学习笔记 01 使用 os 模块的 walk() 函数可以实现历遍目录的操作,该函数接收一个绝对路径字符串作为必选参数,返回三个参数: 当前目录—— ...

  6. 【夯实PHP基础】PHP的反射机制

    本文地址 分享提纲: 1. 介绍 2. 具体例子 2.1 创建Persion类 2.2 反射过程 2.3 反射后使用 1. 介绍 -- PHP5添加了一项新的功能:Reflection.这个功能使得p ...

  7. HTML中的标记-遁地龙卷风

    第三版 上一版本在未经验证的情况下,盲目的认为很多东西是那样,造成错误,非常抱歉. 0.什么是标记 <input type="checkbox" checked />& ...

  8. 【转】 iOS9.2-iOS9.3.3越狱插件清单

    以下是iOS9.3.3越狱插件清单 原文地址:http://bbs.feng.com/read-htm-tid-10668605.html 序列 支持与否 插件名称 兼容版本 支持设备 1 是 20 ...

  9. ContentProvider中央档案馆,以及获取联系人电话的示例

    Android官方文档介绍的数据存储方式共有五种,sqlite,SharedPreferences,网络存储,外储存储,文件存储,但是这些数据都无法进行共享,那么我们就引入了今天的主角:Content ...

  10. Ubuntu搭建NFS

    NFS全称是Network File System,网络文件系统.它可以通过网络实现文件共享.其结构图大概是这样的: 在机器E上开启NFS服务,机器ABCD都挂载NFS,这样可以实现机器ABCD共享文 ...