题目:Mondriaan's Dream

链接:http://poj.org/problem?id=2411

题意:用 1*2 的瓷砖去填 n*m 的地板,问有多少种填法。

思路:

  很久很久以前便做过的一道题目,状压DP,当时写得估计挺艰辛的,今天搜插头DP又搜到它,就先用状压DP写了下,顺利多了,没一会就出来了,可惜因为long long没有1A。

  思路挺简单,一行一行解决,每一列用1 表示对下一行有影响,用0 表示对下一行没有影响,所以一行最多2048 种可能,然后要筛选一下,因为有些本身就不合理,有些因为上一行的影响变得不合理,然后简单的三重循环搞定,发现以前的代码效率更高,懒得追究了,一起贴出来。

 #include<stdio.h>
#include<string.h>
#include<stdlib.h>
#define N 200
typedef long long LL;
int ans[N],ao;
bool check(int i,int m)
{
int co=,o=;
while(i)
{
o++;
if(i&)
{
if(co&) return false;
else co=;
}
else
{
co++;
}
i>>=;
}
if((m-o)&)
return false;
return true;
}
void find(int m)
{
for(int i=;i<(<<m);i++)
{
if(check(i,m)==)
{
ans[ao++]=i;
}
}
}
void dis(int i,int m)
{
int o=;
while(i)
{
printf("%d",i&);
o++;
i>>=;
}
for(int j=o;j<m;j++)
printf("");
printf("\n");
}
int pre[][],po;
LL dp[][];
bool check_2(int a,int b)
{
while(a)
{
if(a&)
{
if(b&);
else return false;
}
a>>=;
b>>=;
}
return true;
}
int main()
{
int n,m;
while(scanf("%d%d",&n,&m)!=EOF)
{
if(n==&&m==) break;
ao=;
find(m);
memset(dp,,sizeof(dp));
po=;
for(int i=;i<ao;i++)
{
pre[][po++]=ans[i];
dp[][ans[i]]=;
}
int ko=;
bool v[]={};
for(int i=;i<n;i++)
{
memset(v,,sizeof(v));
for(int k=;k<po;k++)
{
if(v[pre[i-][k]]) continue;
v[pre[i-][k]]=;
for(int j=;j<ao;j++)
{
if(check_2(pre[i-][k],ans[j]))
{
//printf("pre %d ans %d\n",pre[i-1][k],ans[j]);
pre[i][ko++]=ans[j]^pre[i-][k];
dp[i][pre[i][ko-]]+=dp[i-][pre[i-][k]];
}
}
}
po=ko;
}
printf("%I64d\n",dp[n-][]);
}
return ;
}

AC代码--1

 #include<stdio.h>
#include<string.h>
#define LL long long
LL dp[][]; // 1:影响到下一行 0:不影响下一行 bool check(int m, int up, int x){
int flag=;
while(m--){
if(x&){
if(flag==) return false;
if(up&) return false;
}
else{
if(up&){
if(flag==) return false;
}
else flag^=;
}
x>>=;
up>>=;
}
if(flag==) return false;
return true;
} int main(){
int n, m;
while(scanf("%d%d", &n, &m)!=EOF){
if(n== && m==) break;
if(n*m%==){
printf("0\n");
continue;
}
memset(dp, , sizeof(dp));
int c = ( << m);
for(int i=; i<c; i++){
if(check(m, , i)){
dp[][i]=;
}
}
for(int i=; i<n; i++){
for(int j=; j<c; j++){
if(dp[i-][j]>){
for(int k=; k<c; k++){
if(check(m, j, k)){
dp[i][k]+=dp[i-][j];
}
}
}
}
}
printf("%I64d\n", dp[n-][]);
}
return ;
}

AC代码--2

POJ 2411 Mondriaan's Dream -- 状压DP的更多相关文章

  1. Poj 2411 Mondriaan's Dream(状压DP)

    Mondriaan's Dream Time Limit: 3000MS Memory Limit: 65536K Description Squares and rectangles fascina ...

  2. POJ 2411 Mondriaan's Dream ——状压DP 插头DP

    [题目分析] 用1*2的牌铺满n*m的格子. 刚开始用到动规想写一个n*m*2^m,写了半天才知道会有重复的情况. So Sad. 然后想到数据范围这么小,爆搜好了.于是把每一种状态对应的转移都搜了出 ...

  3. POJ 2411 Mondriaan'sDream(状压DP)

    题目大意:一个矩阵,只能放1*2的木块,问将这个矩阵完全覆盖的不同放法有多少种. 解析:如果是横着的就定义11,如果竖着的定义为竖着的01,这样按行dp只需要考虑两件事儿,当前行&上一行,是不 ...

  4. [poj2411] Mondriaan's Dream (状压DP)

    状压DP Description Squares and rectangles fascinated the famous Dutch painter Piet Mondriaan. One nigh ...

  5. Poj 2411 Mondriaan's Dream(压缩矩阵DP)

    一.Description Squares and rectangles fascinated the famous Dutch painter Piet Mondriaan. One night, ...

  6. POJ - 2411 Mondriaan's Dream(轮廓线dp)

    Mondriaan's Dream Squares and rectangles fascinated the famous Dutch painter Piet Mondriaan. One nig ...

  7. poj 2411 Mondriaan's Dream(状态压缩dP)

    题目:http://poj.org/problem?id=2411 Input The input contains several test cases. Each test case is mad ...

  8. poj 2411 Mondriaan's Dream (轮廓线DP)

    题意:有一个n*m的棋盘,要求用1*2的骨牌来覆盖满它,有多少种方案?(n<12,m<12) 思路: 由于n和m都比较小,可以用轮廓线,就是维护最后边所需要的几个状态,然后进行DP.这里需 ...

  9. POJ 2411 Mondriaan's Dream 插头dp

    题目链接: http://poj.org/problem?id=2411 Mondriaan's Dream Time Limit: 3000MSMemory Limit: 65536K 问题描述 S ...

随机推荐

  1. RecyclerViewLoadMoreDemo【封装上拉加载功能的RecyclerView,搭配SwipeRefreshLayout实现下拉刷新】

    版权声明:本文为HaiyuKing原创文章,转载请注明出处! 前言 封装含有上拉加载功能的RecyclerView,然后搭配SwipeRefreshLayout实现下拉刷新.上拉加载功能. 在项目中将 ...

  2. js简单四则运算

    作业来源 本次作业要求来自于:https://edu.cnblogs.com/campus/gzcc/GZCC-16SE1/homework/2166 我的项目GitHub远程仓库地址:https:/ ...

  3. LindAgile.SchedulingTask~设计一个不错的任务调度组件

    回到目录 SchedulingTask产生的原因 任务调试主要指定期执行某些任务代码,之前用过quartz,感觉有些重,使用时需要添加包包,配置管理项时,对于简单的项目用它就显得有些臃肿了,不如直接上 ...

  4. 一致性Hash漫画图解

    一年之前—— 未来两年内,系统预估的总订单数量可达一亿条左右. 按Mysql单表存储500万条记录来算,暂时不必分库,单库30个分表是比较合适的水平分表方案. 于是小灰设计了这样的分表逻辑: 订单表创 ...

  5. 3.1依赖注入「深入浅出ASP.NET Core系列」

    希望给你3-5分钟的碎片化学习,可能是坐地铁.等公交,积少成多,水滴石穿,谢谢关注. 从UML来理解依赖 1.1什么是依赖 我们先看下图 可以简单理解,一个HomeController类使用到了DBC ...

  6. Python编程从入门到实践笔记——变量和简单数据类型

    Python编程从入门到实践笔记——变量和简单数据类型 #coding=gbk #变量 message_1 = 'aAa fff' message_2 = 'hart' message_3 = &qu ...

  7. Java设计模式系列-工厂方法模式

    原创文章,转载请标注出处:<Java设计模式系列-工厂方法模式> 一.概述 工厂,就是生产产品的地方. 在Java设计模式中使用工厂的概念,那就是生成对象的地方了. 本来直接就能创建的对象 ...

  8. ASCII Art ヾ(≧∇≦*)ゝ

    Conmajia, 2012 Updated on Feb. 18, 2018 What is ASCII art? It's graphic symbols formed by ASCII char ...

  9. sql servse 查询当前库内表索引值

    PERCENT --a.id, THEN c.name ELSE '' END AS 表名, THEN a.name ELSE '' END AS 索引名称, d.name AS 列名, b.keyn ...

  10. 常见js报错

    1Uncaught TypeError: Cannot read property 'length' of null Uncaught TypeError: Cannot read property ...