机器学习之支持向量机(二):SMO算法
注:关于支持向量机系列文章是借鉴大神的神作,加以自己的理解写成的;若对原作者有损请告知,我会及时处理。转载请标明来源。
序:
我在支持向量机系列中主要讲支持向量机的公式推导,第一部分讲到推出拉格朗日对偶函数的对偶因子α;第二部分是SMO算法对于对偶因子的求解;第三部分是核函数的原理与应用,讲核函数的推理及常用的核函数有哪些;第四部分是支持向量机的应用,按照机器学习实战的代码详细解读。
机器学习之支持向量机(四):支持向量机的Python语言实现
1 SMO算法的概念
这里补充一点,后面的K () 函数是核函数,是把低维度的数据投射到高维度中,即把非线性转换成线性分类。知道k 是核函数就可以了,后面会再详细讲解k 函数。我们在上篇中得到关于对偶因子的式子,对其求 α 极大,现在添加符号转化成求极小,两者等价。

转化后的目标函数:

其中 约束条件中 C 是惩罚系数,由对非线性加上松弛因子得到的。
1998年,由Platt提出的序列最小最优化算法(SMO)可以高效的求解上述SVM问题,它把原始求解N个参数二次规划问题分解成很多个子二次规划问题分别求解,每个子问题只需要求解2个参数,方法类似于坐标上升,节省时间成本和降低了内存需求。每次启发式选择两个变量进行优化,不断循环,直到达到函数最优值。
2 SMO算法原理分析
我们的目标:求解对偶因子 α (α1, α2, ... , αN)
2.1 目标函数化成二元函数
SMO算法是通过一定的规定选择两个参数进行优化,并固定其余 N - 2 个参数,假如选取优化的参数是 α1, α2 ,固定α3, α4 , .., αN ,对目标函数进行化简成二元函数得:

这里强调一下,式子中的 Kij 是核函数,知道意思就可以,不了解不太影响SMO算法的推导。
2.2 将二元函数化成一元函数
约束条件:
得到
,其中 ζ 是一个定值。
让两边同时乘以y1 ,化简得到:

将(2)式带入到(1)中可得:

2.3 对一元函数求极值点
对(3)式求导并等于0,得:

假设求解得到的值,记为α1new 、α2new 优化前的解记为α1old 、α2old ,由约束条件知:
得到:

再设支持向量机超平面模型为:f (x) = ωTx + b , ω = Σ αi yi xi 即 f (xi) 为样本xi 的预测值,yi 表示 xi 的真实值,则令Ei 表示误差值。

由于
可得:


将上面的式子(4)(6)(7)带入求导公式中,此时解出的 α2new 没有考虑到约束条件,先记为 α2new unclipped ,得:

带入(5)式子,得:

2.4 求得最终的对偶因子
以上求得的 α2new unclipped 没考虑约束条件:

当
和
异号时,也就是一个为1,一个为-1时,他们可以表示成一条直线,斜率为1。

横轴是
,纵轴是
,
和
既要在矩形方框内,也要在直线上,因此 L <= α2new <= H

最终得到的值:

再根据
得到 α1new :

2.5 临界情况的求值
对于大部分情况 η = K11 + K22 - 2K12 > 0 ,求解方式如上;但 η <= 0 , α2new 取临界点L或H。

当η<0时,目标函数为凸函数,没有极小值,极值在定义域边界处取得。
当η=0时,目标函数为单调函数,同样在边界处取极值。
计算方法:

3 启发式选取变量
3.1 对第一个变量的选取
第一个变量的选择称为外循环,首先遍历整个样本集,选择违反KKT条件的αi作为第一个变量,接着依据相关规则选择第二个变量(见下面分析),对这两个变量采用上述方法进行优化。当遍历完整个样本集后,遍历非边界样本集(0<αi<C)中违反KKT的αi作为第一个变量,同样依据相关规则选择第二个变量,对此两个变量进行优化。当遍历完非边界样本集后,再次回到遍历整个样本集中寻找,即在整个样本集与非边界样本集上来回切换,寻找违反KKT条件的αi作为第一个变量。直到遍历整个样本集后,没有违反KKT条件αi,然后退出。

3.2 对第二个变量的选取
SMO称第二个变量的选择过程为内循环,假设在外循环中找个第一个变量记为α1,第二个变量的选择希望能使α2有较大的变化,由于α2是依赖于|E1−E2|,当E1为正时,那么选择最小的Ei作为E2,如果E1为负,选择最大Ei作为E2,通常为每个样本的Ei保存在一个列表中,选择最大的|E1−E2|来近似最大化步长。
4 阈值b的计算
每完成两个变量的优化后,都要对阈值 b 进行更新,因为关系到 f(x) 的计算,即关系到下次优化时计算。

这部分结束了,通过SMO算法解出的对偶因子的值,可以得到最优的超平面方程 f (x) = ωTx + b ,即对样本能够划分。以上大多借鉴了勿在浮沙筑高台的blog 文章,他写的已经很清晰,我只是在他的基础上
增加或删去不好理解的内容。下篇是对核函数和KKT条件的解释。
机器学习之支持向量机(四):支持向量机的Python语言实现
参考:
1 【机器学习详解】SMO算法剖析 http://blog.csdn.net/luoshixian099/article/details/51227754
2 支持向量机(五)SMO算法
机器学习之支持向量机(二):SMO算法的更多相关文章
- SVM-非线性支持向量机及SMO算法
SVM-非线性支持向量机及SMO算法 如果您想体验更好的阅读:请戳这里littlefish.top 线性不可分情况 线性可分问题的支持向量机学习方法,对线性不可分训练数据是不适用的,为了满足函数间隔大 ...
- 【机器学习详解】SMO算法剖析(转载)
[机器学习详解]SMO算法剖析 转载请注明出处:http://blog.csdn.net/luoshixian099/article/details/51227754 CSDN−勿在浮沙筑高台 本文力 ...
- 机器学习算法整理(七)支持向量机以及SMO算法实现
以下均为自己看视频做的笔记,自用,侵删! 还参考了:http://www.ai-start.com/ml2014/ 在监督学习中,许多学习算法的性能都非常类似,因此,重要的不是你该选择使用学习算法A还 ...
- 支持向量机的smo算法(MATLAB code)
建立smo.m % function [alpha,bias] = smo(X, y, C, tol) function model = smo(X, y, C, tol) % SMO: SMO al ...
- 机器学习-SVM中的SMO算法详解
- 【机器学习】支持向量机(SVM)的优化算法——序列最小优化算法(SMO)概述
SMO算法是一一种启发式算法,它的基本思路是如果所有变量的解的条件都满足最优化问题的KKT条件,那么这个最优化问题的解就得到了.因为KKT条件是该优化问题的充分必要条件. 整个SMO算法包括两个部分: ...
- 机器学习——支持向量机(SVM)之Platt SMO算法
Platt SMO算法是通过一个外循环来选择第一个alpha值的,并且其选择过程会在两种方式之间进行交替: 一种方式是在所有数据集上进行单遍扫描,另一种方式则是在非边界alpha中实现单遍扫描. 所谓 ...
- 统计学习方法c++实现之六 支持向量机(SVM)及SMO算法
前言 支持向量机(SVM)是一种很重要的机器学习分类算法,本身是一种线性分类算法,但是由于加入了核技巧,使得SVM也可以进行非线性数据的分类:SVM本来是一种二分类分类器,但是可以扩展到多分类,本篇不 ...
- 支持向量机SMO算法实现(注释详细)
一:SVM算法 (一)见西瓜书及笔记 (二)统计学习方法及笔记 (三)推文https://zhuanlan.zhihu.com/p/34924821 (四)推文 支持向量机原理(一) 线性支持向量机 ...
随机推荐
- Linux日志轮循实现(shell)
在Linux系统中,日志的使用非常频繁,那么对日志就需要一定策略的管理,包括存放目录的设计,log文件命名规则,历史log文件的存放,log目录的容量限制,另外还有日志轮循. 日志轮循就是,将过期的l ...
- "Cache-control”常见的取值private、no-cache、max-age、must-revalidate及其用意
http://www.cnblogs.com/kaima/archive/2009/10/13/1582337.html 网页的缓存是由HTTP消息头中的"Cache-control&quo ...
- C/C++基础知识总结
[006] HIWORD宏取高16位. [005] 使用strcmp需判断参数是否为NULL [004] main函数的第三个参数envp 有的编译器支持三个参数的main函数,但不推荐这么写. [0 ...
- python初识-day3
1.字符串常用操作(较多,用代码加注释表示) name = '\tMy name is congcong' print(name.capitalize())#输出结果为 My name is cong ...
- Tomcat服务器的Web安全的解决方法
.概述 在任何一种WEB应用开发中,不论大中小规模的,每个开发者都会遇到一些需要保护程序数据的问题,涉及到用户的LOGIN ID和PASSWORD.那么如何执行验证方式更好呢?实际上,有很多方式来实现 ...
- C++ 指针大小
32 位机: 指针大小 sizeof(void*)4字节,32位.例如:0x12345678 64位机: 指针大小: sizeof(void*)8字节,64位.一般只用48位,指针形如:0x12345 ...
- hibernate 持久化对象的三个状态
Hibernate中的对象有3种状态 瞬时对象(TransientObjects).持久化对象(PersistentObjects)和离线对象(DetachedObjects也叫做脱管对象) Tran ...
- struts 中自定义action访问方法
struts中action类继承了ActionSupport 默认实现了execute()方法 struts.xml配置文件中 然后可以配置如下映射: <package name =" ...
- __call PHP伪重载方法
为了避免当调用的方法不存在时产生错误,可以使用 __call() 方法来避免.该方法在调用的方法不存在时会自动调用,程序仍会继续执行下去 该方法有两个参数,第一个参数 $function_name 会 ...
- Redis Crackit漏洞防护
Redis Crackit漏洞利用和防护 注意:本文只是阐述该漏洞的利用方式和如何预防.根据职业道德和<中华人民共和国计算机信息系统安全保护条例>,如果发现的别人的漏洞,千万不要轻易入侵, ...