Description

SD有一名神犇叫做Oxer,他觉得字符串的题目都太水了,于是便出了一道题来虐蒟蒻yts1999。

他给出了一个字符串T,字符串T中有且仅有4种字符 'A', 'B', 'C', 'D'。现在他要求蒟蒻yts1999构造一个新的字符串S,构造的方法是:进行多次操作,每一次操作选择T的一个子串,将其加入S的末尾。

对于一个可构造出的字符串S,可能有多种构造方案,Oxer定义构造字符串S所需的操作次数为所有构造方案中操作次数的最小值。

Oxer想知道对于给定的正整数N和字符串T,他所能构造出的所有长度为N的字符串S中,构造所需的操作次数最大的字符串的操作次数。

蒟蒻yts1999当然不会做了,于是向你求助。

Solution

如果S字符串我们已经知道,那么求操作次数就是一个贪心的过程:因为走到后缀自动机上每一个节点的路径对应原串的一个子串,在后缀自动机上一直走,直到不可以走为止,然后重新开始匹配

基于这个思路,我们可以二分一个操作次数\(mid\),然后用 \(mid\) 个原串的子串构造一个长度最小的串\(S\),然后比较与\(n\)的关系即可

考虑构造的方法:

设 \(f[i][j]\) 表示以字符\(i\)开头的子串后面接上一个以\(j\)开头的子串,使得\(i\)开头的和\(j\)开头的两个子串接在一起不是原串的子串的情况下,\(i\)后面接的这个子串最少是多长

显然我们只需要用\(f\)数组转移\(mid\)次,取最小的一个串即可,这个过程每一步都是相同的,可以用矩阵快速幂优化或倍增\(floyd\)优化一下.

考虑预处理\(f\)数组:

设\(g[i][j]\)表示在后缀自动机上的\(i\)节点,最少走几步可以使后面接上一个以\(j\)开头的子串,接好的串不出现在原串中.

\(g[i][j]=min(g[son][j]+1)\)

\(g[i][j]=0\) 如果\(i\)节点没有\(j\)这个儿子

\(f[i][j]=g[ch[1][i]][j]\),1的\(i\)儿子往后走的串一定是以\(i\)开头的子串

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=2e5+10;const ll inf=1e18+10;
ll n;char S[N];int cur=1,cnt=1,len[N],fa[N],ch[N][5];
inline void ins(int c){
int p=cur;cur=++cnt;len[cur]=len[p]+1;
for(;!ch[p][c];p=fa[p])ch[p][c]=cur;
if(!p)fa[cur]=1;
else{
int q=ch[p][c];
if(len[q]==len[p]+1)fa[cur]=q;
else{
int nt=++cnt;len[nt]=len[p]+1;
memcpy(ch[nt],ch[q],sizeof(ch[q]));
fa[nt]=fa[q];fa[q]=fa[cur]=nt;
for(;ch[p][c]==q;p=fa[p])ch[p][c]=nt;
}
}
}
int sa[N],c[N],f[N][6];
inline void priwork(){
memset(f,127/3,sizeof(f));
for(int i=1;i<=cnt;i++)c[len[i]]++;
for(int i=1;i<=cnt;i++)c[i]+=c[i-1];
for(int i=cnt;i;i--)sa[c[len[i]]--]=i;
for(int i=cnt;i;i--){
int x=sa[i];
for(int j=0;j<4;j++){
if(!ch[x][j])f[x][j]=1;
for(int k=0;k<4;k++)
f[x][j]=min(f[x][j],f[ch[x][k]][j]+1);
}
}
}
struct node{
ll a[5][5];
node(){memset(a,0,sizeof(a));}
void Clear(node &x,ll y){
for(int i=0;i<5;i++)
for(int j=0;j<5;j++)x.a[i][j]=y;
}
inline node operator *(const node &p){
node ret;Clear(ret,inf);
for(int i=1;i<=4;i++)
for(int j=1;j<=4;j++)
for(int k=1;k<=4;k++)
ret.a[i][j]=min(ret.a[i][j],a[i][k]+p.a[k][j]);
return ret;
}
inline node ksm(node x,ll k){
node sum;
while(k){
if(k&1)sum=sum*x;
x=x*x;k>>=1;
}
return sum;
}
};
inline bool check(ll mid){
node S;
for(int i=1;i<=4;i++)
for(int j=1;j<=4;j++)
S.a[i][j]=f[ch[1][i-1]][j-1];
S=S.ksm(S,mid);
ll ret=inf;
for(int i=1;i<=4;i++)
for(int j=1;j<=4;j++)
ret=min(ret,S.a[i][j]);
return ret>=n;
}
int main(){
freopen("pp.in","r",stdin);
freopen("pp.out","w",stdout);
cin>>n;
scanf("%s",S);
int le=strlen(S);
for(int i=0;i<le;i++)ins(S[i]-'A');
priwork();
ll l=1,r=n,mid,ans=0;
while(l<=r){
mid=(l+r)>>1;
if(check(mid))ans=mid,r=mid-1;
else l=mid+1;
}
cout<<ans<<endl;
return 0;
}

bzoj 4180: 字符串计数的更多相关文章

  1. 「bzoj 4180: 字符串计数」

    题目 真是一道好题 首先根据一个非常显然的贪心,如果给出了一个串\(S\),我们如何算最小操作次数呢 非常简单,我们直接把\(S\)拉到\(T\)的\(SAM\)上去跑,如果跑不动了就停下来,重新回到 ...

  2. BZOJ 4180: 字符串计数 后缀自动机 + 矩阵乘法 + 二分(神题)

    Description SD有一名神犇叫做Oxer,他觉得字符串的题目都太水了,于是便出了一道题来虐蒟蒻yts1999.   他给出了一个字符串T,字符串T中有且仅有4种字符 'A', 'B', 'C ...

  3. BZOJ.4180.字符串计数(后缀自动机 二分 矩阵快速幂/倍增Floyd)

    题目链接 先考虑 假设S确定,使构造S操作次数最小的方案应是:对T建SAM,S在SAM上匹配,如果有S的转移就转移,否则操作数++,回到根节点继续匹配S.即每次操作一定是一次极大匹配. 简单证明:假设 ...

  4. 【BZOJ 4180】 4180: 字符串计数 (SAM+二分+矩阵乘法)

    4180: 字符串计数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 164  Solved: 75 Description SD有一名神犇叫做Oxe ...

  5. 【BZOJ-4180】字符串计数 后缀自动机 + 矩阵乘法

    4180: 字符串计数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 146  Solved: 66[Submit][Status][Discuss] ...

  6. BZOJ 2839: 集合计数 解题报告

    BZOJ 2839: 集合计数 Description 一个有\(N\)个元素的集合有\(2^N\)个不同子集(包含空集),现在要在这\(2^N\)个集合中取出若干集合(至少一个),使得 它们的交集的 ...

  7. bzoj 3473 字符串 - 后缀数组 - 树状数组

    题目传送门 传送门 题目大意 给定n个字符串,询问每个字符串有多少子串(不包括空串)是所有n个字符串中至少k个字符串的子串 先用奇怪的字符把所有字符串连接起来. 建后缀树,数每个节点的子树内包含多少属 ...

  8. BZOJ 2865 字符串识别 | 后缀数组 线段树

    集训讲字符串的时候我唯一想出正解的题-- 链接 BZOJ 2865 题面 给出一个长度为n (n <= 5e5) 的字符串,对于每一位,求包含该位的.最短的.在原串中只出现过一次的子串. 题解 ...

  9. BZOJ 3277 串 & BZOJ 3473 字符串 (广义后缀自动机、时间复杂度分析、启发式合并、线段树合并、主席树)

    标签那么长是因为做法太多了... 题目链接: (bzoj 3277) https://www.lydsy.com/JudgeOnline/problem.php?id=3277 (bzoj 3473) ...

随机推荐

  1. 听翁恺老师mooc笔记(2)-第一个程序--&运算符

    使用devC++写hello world 第一步:文件-新建-源代码.然后输入"输出hello world"程序: 注意:写程序时关闭中文输入法,否则语句输入的分号可能会被识别为错 ...

  2. C语言数据类型作业

    一.PTA实验作业 题目1:7-4 打印菱形图案 1. 本题PTA提交列表 2. 设计思路 1.定义m,n(用于计算空格数,输出"* "数),i,j,k(用于循环) 2.输入n,并 ...

  3. 20162330 第十二周 蓝墨云班课 hash

    题目要求 利用除留余数法为下列关键字集合的存储设计hash函数,并画出分别用开放寻址法和拉链法解决冲突得到的空间存储状态(散列因子取0.75) 关键字集合:85,75,57,60,65,(你的8位学号 ...

  4. alpha-咸鱼冲刺day1-紫仪

    总汇链接 一,合照 emmmmm.自然是没有的. 二,项目燃尽图 三,项目进展   登陆界面随意写了一下.(明天用来做测试的) 把学姐给我的模板改成了自家的个人主页界面,侧边栏啥的都弄出来了(快撒花花 ...

  5. 设计模式NO.3

    设计模式NO.3 本次博客内容为第三次设计模式的练习.根据老师的要求完成下列题目: 题目1 某商品管理系统的商品名称存储在一个字符串数组中,现需要自定义一个双向迭代器(MyIterator)实现对该商 ...

  6. Swift - 使用导航条和导航条控制器来进行页面切换并传递数据

    转自:http://www.hangge.com/blog/cache/detail_586.html

  7. c++ 中lambda

    C++ 11中的Lambda表达式用于定义并创建匿名的函数对象,以简化编程工作. 1.Lambda表达式完整的声明格式如下: [capture list] (params list) mutable  ...

  8. WPF自学入门(十一)WPF MVVM模式Command命令

    在WPF自学入门(十)WPF MVVM简单介绍中的示例似乎运行起来没有什么问题,也可以进行更新.但是这并不是我们使用MVVM的正确方式.正如上一篇文章中在开始说的,MVVM的目的是为了最大限度地降低了 ...

  9. C# HttpClient设置cookies的两种办法 (转发)

    一般有两种办法 第一种handler.UseCookies=true(默认为true),默认的会自己带上cookies,例如 var handler = new HttpClientHandler() ...

  10. 南阳OJ-12-喷水装置(二)贪心+区间覆盖

    题目链接: http://acm.nyist.edu.cn/JudgeOnline/problem.php?pid=12 题目大意: 有一块草坪,横向长w,纵向长为h,在它的橫向中心线上不同位置处装有 ...