维基百科在 IRC 频道上记录 Wiki 被修改的日志,我们可以通过监听这个 IRC 频道,来实时监控给定时间窗口内的修改事件。Apache Flink 作为流计算引擎,非常适合处理流数据,并且,类似于 Hadoop MapReduce 等框架,Flink 提供了非常良好的抽象,使得业务逻辑代码编写非常简单。我们通过这个简单的例子来感受一下 Flink 的程序的编写。

通过 Flink Quickstart 构建 Maven 工程

Flink 提供了 flink-quickstart-javaflink-quickstart-scala 插件,允许使用 Maven 的开发者创建统一的项目模版,应用项目模板可以规避掉很多部署上的坑。

构建这次工程的命令如下

$ mvn archetype:generate \
    -DarchetypeGroupId=org.apache.flink \
    -DarchetypeArtifactId=flink-quickstart-java \
    -DarchetypeCatalog=https://repository.apache.org/content/repositories/snapshots/ \
    -DarchetypeVersion=1.6-SNAPSHOT \
    -DgroupId=wiki-edits \
    -DartifactId=wiki-edits \
    -Dversion=0.1 \
    -Dpackage=wikiedits \
    -DinteractiveMode=false

注意高版本的 Maven 不支持 -DarchetypeCatalog 参数,可以将第一行改为  mvn org.apache.maven.plugins:maven-archetype-plugin:2.4::generate \ 或者去掉 -DarchetypeCatalog 行,并将 .m2/settings.xml 修改如下,其中主要是在 //profiles/profile/repositories 下设置好搜索 archetype 的仓库地址

<settings xmlns="http://maven.apache.org/POM/4.0.0"
  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
  xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
                      http://maven.apache.org/xsd/settings-1.0.0.xsd">

  <profiles>
    <profile>
      <id>acme</id>
      <repositories>
        <repository>
            <id>archetype</id>
            <name>Apache Development Snapshot Repository</name>
            <url>https://repository.apache.org/content/repositories/snapshots/</url>
            <releases>
                <enabled>false</enabled>
            </releases>
            <snapshots>
                <enabled>true</enabled>
            </snapshots>
        </repository>
      </repositories>
    </profile>
  </profiles>

  <activeProfiles>
    <activeProfile>acme</activeProfile>
  </activeProfiles>

</settings>

成功下载项目模板后,在当前目录下应当能看到 wiki-edit 目录。执行命令 rm wiki-edits/src/main/java/wikiedits/*.java 清除模板自带的 Java 文件。

为了监听维基百科的 IRC 频道,在 pom.xml 文件下添加如下依赖,分别是 Flink 的客户端和 WikiEdit 的连接器

        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-clients_${scala.binary.version}</artifactId>
            <version>${flink.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-connector-wikiedits_${scala.binary.version}</artifactId>
            <version>${flink.version}</version>
        </dependency>

编写 Flink 程序

接下来的代码编写工作假定你是在 IDE 下编写的,主要是为了避免啰嗦的 import 语句。包含 import 等模板代码的全部代码在末尾给出。

首先我们创建用于运行的主程序代码 src/main/java/wikiedits/WikipediaAnalysis.java

package wikiedits;

public class WikipediaAnalysis {
    public static void main(String[] args) throws Exception {

    }
}

流处理的 Flink 程序的第一步是创建流处理执行上下文 StreamExecutionEnvironment,它类似于其他框架内的 Configuration 类,用于配制 Flink 程序和运行时的各个参数,对应的语句如下

StreamExecutionEnvironment see = StreamExecutionEnvironment.getExecutionEnvironment();

下一步我们以维基百科 IRC 频道的日志作为数据源创建连接

DataStream<WikipediaEditEvent> edits = see.addSource(new WikipediaEditsSource());

这个语句创建了填充 WikipediaEditEventDataStream,拿到数据流之后我们就可以对它做进一步的操作了。

我们的目标是统计给定时间窗口内,比如说五秒内,用户对维基百科的修改字节数。因此我们对每个 WikipediaEditEvent 以用户名作为键来标记(keyed)。Flink 兼容 Java 1.6 版本,因此古老的版本中 Flink 提供 KeySelector 函数式接口来标记

KeyedStream<WikipediaEditEvent, String> keyedEdits = edits
    .keyBy(new KeySelector<WikipediaEditEvent, String>() {
        @Override
        public String getKey(WikipediaEditEvent event) {
            return event.getUser();
        }
    });

当前版本的 Flink 主要支持的是 Java 8 版本,因此我们也可以用 Lambda 表达式来改写这段较为繁琐的代码

KeyedStream<WikipediaEditEvent, String> keyedEdits = edits
        .keyBy(WikipediaEditEvent::getUser);

这个语句定义了 keyedEdits 变量,它是一个概念上形如(String, WikipediaEditEvent) 的数据流,即以字符串(用户名)为键,WikipediaEditEvent 为值的数据的流。这一步骤类似于 MapReduce 的 Shuffle 过程,针对 keyedEdits 的处理将自动按照键分组,因此我们可以直接对数据进行 fold 操作以折叠聚合同一用户名的修改字节数

DataStream<Tuple2<String, Long>> result = keyedEdits
    .timeWindow(Time.seconds(5))
    .fold(new Tuple2<>("", 0L), new FoldFunction<WikipediaEditEvent, Tuple2<String, Long>>() {
        @Override
        public Tuple2<String, Long> fold(Tuple2<String, Long> acc, WikipediaEditEvent event) {
            acc.f0 = event.getUser();
            acc.f1 += event.getByteDiff();
            return acc;
        }
    });

在新版的 Flink 中,FoldFunction 因为无法支持部分聚合被废弃了,如果对程序有强迫症,我们可以采用类似于 MapReduce 的办法来改写上边的代码,各个方法调用的作用与它们的名字一致,其中,为了绕过类型擦除导致的问题使用了 returns 函数

DataStream<Tuple2<String, Long>> result = keyedEdits
        .map((event) -> new Tuple2<>(event.getUser(), Long.valueOf(event.getByteDiff())))
        .returns(new TypeHint<Tuple2<String, Long>>(){})
        .timeWindowAll(Time.seconds(5))
        .reduce((acc, a) -> new Tuple2<>(a.f0, acc.f1+a.f1));

经过处理后的数据流 result 中就包含了我们所需要的信息,具体地说是填充了 Tuple2<String, Long>,即(用户名,修改字节数)元组的流,我们可以使用 result.print() 来打印它。

程序至此主要处理逻辑就写完了,但是 Flink 还需要在 StreamExecutionEnvironment 类型的变量上调用 execute 方法以实际执行整个 Flink 程序,该方法执行时将整个 Flink 程序转化为任务图并提交到 Flink 集群中。

整个程序的代码,包括模板代码,如下所示

package wikiedits;

import org.apache.flink.api.common.typeinfo.TypeHint;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.KeyedStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.streaming.connectors.wikiedits.WikipediaEditEvent;
import org.apache.flink.streaming.connectors.wikiedits.WikipediaEditsSource;
import org.apache.flink.api.java.tuple.Tuple2;

public class WikipediaAnalysis {
    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment see = StreamExecutionEnvironment.getExecutionEnvironment();
        DataStream<WikipediaEditEvent> edits = see.addSource(new WikipediaEditsSource());
        KeyedStream<WikipediaEditEvent, String> keyedEdits = edits
                .keyBy(WikipediaEditEvent::getUser);
        DataStream<Tuple2<String, Long>> result = keyedEdits
                .map((event) -> new Tuple2<>(event.getUser(), Long.valueOf(event.getByteDiff())))
                .returns(new TypeHint<Tuple2<String, Long>>(){})
                .timeWindowAll(Time.seconds(5))
                .reduce((acc, a) -> new Tuple2<>(a.f0, acc.f1+a.f1));
        result.print();
        see.execute();
    }
}

可以通过 IDE 运行程序,在控制台看到类似下面格式的输出,每一行前面的数字代表了这是由 print 的并行实例中的编号为几的实例运行的结果

1> (LilHelpa,1966)
2> (1.70.80.5,2066)
3> (Beyond My Ken,-6550)
4> (Aleksandr Grigoryev,725)
1> (6.77.155.31,1943)
2> (Serols,1639)
3> (ClueBot NG,1907)
4> (GSS,3155)

Apache Flink 流处理实例的更多相关文章

  1. Apache Flink流式处理

    花了四小时,看完Flink的内容,基本了解了原理. 挖个坑,待总结后填一下. 2019-06-02 01:22:57等欧冠决赛中,填坑. 一.概述 storm最大的特点是快,它的实时性非常好(毫秒级延 ...

  2. 官宣 | Apache Flink 1.12.0 正式发布,流批一体真正统一运行!

    官宣 | Apache Flink 1.12.0 正式发布,流批一体真正统一运行! 原创 Apache 博客 [Flink 中文社区](javascript:void(0) 翻译 | 付典 Revie ...

  3. Apache Flink 1.12.0 正式发布,DataSet API 将被弃用,真正的流批一体

    Apache Flink 1.12.0 正式发布 Apache Flink 社区很荣幸地宣布 Flink 1.12.0 版本正式发布!近 300 位贡献者参与了 Flink 1.12.0 的开发,提交 ...

  4. 《基于Apache Flink的流处理》读书笔记

    前段时间详细地阅读了 <Apache Flink的流处理> 这本书,作者是 Fabian Hueske&Vasiliki Kalavri,国内崔星灿翻译的,这本书非常详细.全面得介 ...

  5. Apache Flink中的广播状态实用指南

    感谢英文原文作者:https://data-artisans.com/blog/a-practical-guide-to-broadcast-state-in-apache-flink 不过,原文最近 ...

  6. Apache Flink:特性、概念、组件栈、架构及原理分析

     2016-04-30 22:24:39    Yanjun Apache Flink是一个面向分布式数据流处理和批量数据处理的开源计算平台,它能够基于同一个Flink运行时(Flink Runtim ...

  7. Apache Flink 漫谈系列 - JOIN 算子

    聊什么 在<Apache Flink 漫谈系列 - SQL概览>中我们介绍了JOIN算子的语义和基本的使用方式,介绍过程中大家发现Apache Flink在语法语义上是遵循ANSI-SQL ...

  8. 深入理解Apache Flink

    Apache Flink(下简称Flink)项目是大数据处理领域最近冉冉升起的一颗新星,其不同于其他大数据项目的诸多特性吸引了越来越多人的关注.本文将深入分析Flink的一些关键技术与特性,希望能够帮 ...

  9. 深入理解Apache Flink核心技术

    深入理解Apache Flink核心技术 2016年02月18日 17:04:03 阅读数:1936 标签: Apache-Flink数据流程序员JVM   版权声明:本文为博主原创文章,未经博主允许 ...

随机推荐

  1. Linux多线程实践(3) --线程属性

    初始化/销毁线程属性 int pthread_attr_init(pthread_attr_t *attr); int pthread_attr_destroy(pthread_attr_t *att ...

  2. OJ题:奇偶归一猜想——求归一过程中的最大值

    题目: 题目内容: 奇偶归一猜想--对于每一个正整数,如果它是奇数,则对它乘3再加1,如果它是偶数,则对它除以2,如此循环,最终都能够得到1. 如n = 11,得序列:11, 34, 17, 52, ...

  3. 认证模式之SSL模式

    SSL模式是基于SSL通信的一种认证模式,使用它的前提是浏览器和web服务器之间必须使用https协议,因为它必须走SSL协议通道才能完成认证流程.它的大体流程是这样的:客户端与服务器之间通过SSL协 ...

  4. 9.7、Libgdx之振动器

    (官网:www.libgdx.cn) 振动器允许你提醒手机用户. 振动器智能应用在Android设备中,需要特殊的权限: android.permission.VIBRATE 可以通过如下方式实现振动 ...

  5. 使用spine骨骼动画制作的libgdx游戏

    (官网:www.libgdx.cn) Super Spineboy是一个使用Spine和libgdx开发的跨平台游戏(Windows,Mac,Linux),Spine是一个2D游戏动画工具.Super ...

  6. 网站开发进阶(三十二)HTML5之FileReader的使用

    HTML5之FileReader的使用 HTML5定义了FileReader作为文件API的重要成员用于读取文件,根据W3C的定义,FileReader接口提供了读取文件的方法和包含读取结果的事件模型 ...

  7. 【一天一道LeetCode】#54. Spiral Matrix

    一天一道LeetCode系列 (一)题目 Given a matrix of m x n elements (m rows, n columns), return all elements of th ...

  8. wing带你玩转自定义view系列(2) 简单模仿qq未读消息去除效果

    上一篇介绍了贝塞尔曲线的简单应用 仿360内存清理效果 这一篇带来一个  两条贝塞尔曲线的应用 : 仿qq未读消息去除效果. 转载请注明出处:http://blog.csdn.net/wingicho ...

  9. Android实训案例(六)——四大组件之一BroadcastReceiver的基本使用,拨号,短信,SD卡,开机,应用安装卸载监听

    Android实训案例(六)--四大组件之一BroadcastReceiver的基本使用,拨号,短信,SD卡,开机,应用安装卸载监听 Android中四大组件的使用时重中之重,我这个阶段也不奢望能把他 ...

  10. Java-ServletConfig

    /** * * A servlet configuration object used by a servlet container * to pass information to a servle ...