Apache Flink 流处理实例
维基百科在 IRC 频道上记录 Wiki 被修改的日志,我们可以通过监听这个 IRC 频道,来实时监控给定时间窗口内的修改事件。Apache Flink 作为流计算引擎,非常适合处理流数据,并且,类似于 Hadoop MapReduce 等框架,Flink 提供了非常良好的抽象,使得业务逻辑代码编写非常简单。我们通过这个简单的例子来感受一下 Flink 的程序的编写。
通过 Flink Quickstart 构建 Maven 工程
Flink 提供了 flink-quickstart-java
和 flink-quickstart-scala
插件,允许使用 Maven 的开发者创建统一的项目模版,应用项目模板可以规避掉很多部署上的坑。
构建这次工程的命令如下
$ mvn archetype:generate \
-DarchetypeGroupId=org.apache.flink \
-DarchetypeArtifactId=flink-quickstart-java \
-DarchetypeCatalog=https://repository.apache.org/content/repositories/snapshots/ \
-DarchetypeVersion=1.6-SNAPSHOT \
-DgroupId=wiki-edits \
-DartifactId=wiki-edits \
-Dversion=0.1 \
-Dpackage=wikiedits \
-DinteractiveMode=false
注意高版本的 Maven 不支持 -DarchetypeCatalog
参数,可以将第一行改为 mvn org.apache.maven.plugins:maven-archetype-plugin:2.4::generate \
或者去掉 -DarchetypeCatalog
行,并将 .m2/settings.xml
修改如下,其中主要是在 //profiles/profile/repositories
下设置好搜索 archetype
的仓库地址
<settings xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/settings-1.0.0.xsd">
<profiles>
<profile>
<id>acme</id>
<repositories>
<repository>
<id>archetype</id>
<name>Apache Development Snapshot Repository</name>
<url>https://repository.apache.org/content/repositories/snapshots/</url>
<releases>
<enabled>false</enabled>
</releases>
<snapshots>
<enabled>true</enabled>
</snapshots>
</repository>
</repositories>
</profile>
</profiles>
<activeProfiles>
<activeProfile>acme</activeProfile>
</activeProfiles>
</settings>
成功下载项目模板后,在当前目录下应当能看到 wiki-edit
目录。执行命令 rm wiki-edits/src/main/java/wikiedits/*.java
清除模板自带的 Java 文件。
为了监听维基百科的 IRC 频道,在 pom.xml
文件下添加如下依赖,分别是 Flink 的客户端和 WikiEdit 的连接器
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-clients_${scala.binary.version}</artifactId>
<version>${flink.version}</version>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-connector-wikiedits_${scala.binary.version}</artifactId>
<version>${flink.version}</version>
</dependency>
编写 Flink 程序
接下来的代码编写工作假定你是在 IDE 下编写的,主要是为了避免啰嗦的 import
语句。包含 import
等模板代码的全部代码在末尾给出。
首先我们创建用于运行的主程序代码 src/main/java/wikiedits/WikipediaAnalysis.java
package wikiedits;
public class WikipediaAnalysis {
public static void main(String[] args) throws Exception {
}
}
流处理的 Flink 程序的第一步是创建流处理执行上下文 StreamExecutionEnvironment
,它类似于其他框架内的 Configuration 类,用于配制 Flink 程序和运行时的各个参数,对应的语句如下
StreamExecutionEnvironment see = StreamExecutionEnvironment.getExecutionEnvironment();
下一步我们以维基百科 IRC 频道的日志作为数据源创建连接
DataStream<WikipediaEditEvent> edits = see.addSource(new WikipediaEditsSource());
这个语句创建了填充 WikipediaEditEvent
的 DataStream
,拿到数据流之后我们就可以对它做进一步的操作了。
我们的目标是统计给定时间窗口内,比如说五秒内,用户对维基百科的修改字节数。因此我们对每个 WikipediaEditEvent
以用户名作为键来标记(keyed)。Flink 兼容 Java 1.6 版本,因此古老的版本中 Flink 提供 KeySelector
函数式接口来标记
KeyedStream<WikipediaEditEvent, String> keyedEdits = edits
.keyBy(new KeySelector<WikipediaEditEvent, String>() {
@Override
public String getKey(WikipediaEditEvent event) {
return event.getUser();
}
});
当前版本的 Flink 主要支持的是 Java 8 版本,因此我们也可以用 Lambda 表达式来改写这段较为繁琐的代码
KeyedStream<WikipediaEditEvent, String> keyedEdits = edits
.keyBy(WikipediaEditEvent::getUser);
这个语句定义了 keyedEdits
变量,它是一个概念上形如(String, WikipediaEditEvent)
的数据流,即以字符串(用户名)为键,WikipediaEditEvent
为值的数据的流。这一步骤类似于 MapReduce 的 Shuffle 过程,针对 keyedEdits
的处理将自动按照键分组,因此我们可以直接对数据进行 fold
操作以折叠聚合同一用户名的修改字节数
DataStream<Tuple2<String, Long>> result = keyedEdits
.timeWindow(Time.seconds(5))
.fold(new Tuple2<>("", 0L), new FoldFunction<WikipediaEditEvent, Tuple2<String, Long>>() {
@Override
public Tuple2<String, Long> fold(Tuple2<String, Long> acc, WikipediaEditEvent event) {
acc.f0 = event.getUser();
acc.f1 += event.getByteDiff();
return acc;
}
});
在新版的 Flink 中,FoldFunction
因为无法支持部分聚合被废弃了,如果对程序有强迫症,我们可以采用类似于 MapReduce 的办法来改写上边的代码,各个方法调用的作用与它们的名字一致,其中,为了绕过类型擦除导致的问题使用了 returns
函数
DataStream<Tuple2<String, Long>> result = keyedEdits
.map((event) -> new Tuple2<>(event.getUser(), Long.valueOf(event.getByteDiff())))
.returns(new TypeHint<Tuple2<String, Long>>(){})
.timeWindowAll(Time.seconds(5))
.reduce((acc, a) -> new Tuple2<>(a.f0, acc.f1+a.f1));
经过处理后的数据流 result
中就包含了我们所需要的信息,具体地说是填充了 Tuple2<String, Long>
,即(用户名,修改字节数)元组的流,我们可以使用 result.print()
来打印它。
程序至此主要处理逻辑就写完了,但是 Flink 还需要在 StreamExecutionEnvironment
类型的变量上调用 execute
方法以实际执行整个 Flink 程序,该方法执行时将整个 Flink 程序转化为任务图并提交到 Flink 集群中。
整个程序的代码,包括模板代码,如下所示
package wikiedits;
import org.apache.flink.api.common.typeinfo.TypeHint;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.KeyedStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.streaming.connectors.wikiedits.WikipediaEditEvent;
import org.apache.flink.streaming.connectors.wikiedits.WikipediaEditsSource;
import org.apache.flink.api.java.tuple.Tuple2;
public class WikipediaAnalysis {
public static void main(String[] args) throws Exception {
StreamExecutionEnvironment see = StreamExecutionEnvironment.getExecutionEnvironment();
DataStream<WikipediaEditEvent> edits = see.addSource(new WikipediaEditsSource());
KeyedStream<WikipediaEditEvent, String> keyedEdits = edits
.keyBy(WikipediaEditEvent::getUser);
DataStream<Tuple2<String, Long>> result = keyedEdits
.map((event) -> new Tuple2<>(event.getUser(), Long.valueOf(event.getByteDiff())))
.returns(new TypeHint<Tuple2<String, Long>>(){})
.timeWindowAll(Time.seconds(5))
.reduce((acc, a) -> new Tuple2<>(a.f0, acc.f1+a.f1));
result.print();
see.execute();
}
}
可以通过 IDE 运行程序,在控制台看到类似下面格式的输出,每一行前面的数字代表了这是由 print
的并行实例中的编号为几的实例运行的结果
1> (LilHelpa,1966)
2> (1.70.80.5,2066)
3> (Beyond My Ken,-6550)
4> (Aleksandr Grigoryev,725)
1> (6.77.155.31,1943)
2> (Serols,1639)
3> (ClueBot NG,1907)
4> (GSS,3155)
Apache Flink 流处理实例的更多相关文章
- Apache Flink流式处理
花了四小时,看完Flink的内容,基本了解了原理. 挖个坑,待总结后填一下. 2019-06-02 01:22:57等欧冠决赛中,填坑. 一.概述 storm最大的特点是快,它的实时性非常好(毫秒级延 ...
- 官宣 | Apache Flink 1.12.0 正式发布,流批一体真正统一运行!
官宣 | Apache Flink 1.12.0 正式发布,流批一体真正统一运行! 原创 Apache 博客 [Flink 中文社区](javascript:void(0) 翻译 | 付典 Revie ...
- Apache Flink 1.12.0 正式发布,DataSet API 将被弃用,真正的流批一体
Apache Flink 1.12.0 正式发布 Apache Flink 社区很荣幸地宣布 Flink 1.12.0 版本正式发布!近 300 位贡献者参与了 Flink 1.12.0 的开发,提交 ...
- 《基于Apache Flink的流处理》读书笔记
前段时间详细地阅读了 <Apache Flink的流处理> 这本书,作者是 Fabian Hueske&Vasiliki Kalavri,国内崔星灿翻译的,这本书非常详细.全面得介 ...
- Apache Flink中的广播状态实用指南
感谢英文原文作者:https://data-artisans.com/blog/a-practical-guide-to-broadcast-state-in-apache-flink 不过,原文最近 ...
- Apache Flink:特性、概念、组件栈、架构及原理分析
2016-04-30 22:24:39 Yanjun Apache Flink是一个面向分布式数据流处理和批量数据处理的开源计算平台,它能够基于同一个Flink运行时(Flink Runtim ...
- Apache Flink 漫谈系列 - JOIN 算子
聊什么 在<Apache Flink 漫谈系列 - SQL概览>中我们介绍了JOIN算子的语义和基本的使用方式,介绍过程中大家发现Apache Flink在语法语义上是遵循ANSI-SQL ...
- 深入理解Apache Flink
Apache Flink(下简称Flink)项目是大数据处理领域最近冉冉升起的一颗新星,其不同于其他大数据项目的诸多特性吸引了越来越多人的关注.本文将深入分析Flink的一些关键技术与特性,希望能够帮 ...
- 深入理解Apache Flink核心技术
深入理解Apache Flink核心技术 2016年02月18日 17:04:03 阅读数:1936 标签: Apache-Flink数据流程序员JVM 版权声明:本文为博主原创文章,未经博主允许 ...
随机推荐
- Linux多线程实践(3) --线程属性
初始化/销毁线程属性 int pthread_attr_init(pthread_attr_t *attr); int pthread_attr_destroy(pthread_attr_t *att ...
- OJ题:奇偶归一猜想——求归一过程中的最大值
题目: 题目内容: 奇偶归一猜想--对于每一个正整数,如果它是奇数,则对它乘3再加1,如果它是偶数,则对它除以2,如此循环,最终都能够得到1. 如n = 11,得序列:11, 34, 17, 52, ...
- 认证模式之SSL模式
SSL模式是基于SSL通信的一种认证模式,使用它的前提是浏览器和web服务器之间必须使用https协议,因为它必须走SSL协议通道才能完成认证流程.它的大体流程是这样的:客户端与服务器之间通过SSL协 ...
- 9.7、Libgdx之振动器
(官网:www.libgdx.cn) 振动器允许你提醒手机用户. 振动器智能应用在Android设备中,需要特殊的权限: android.permission.VIBRATE 可以通过如下方式实现振动 ...
- 使用spine骨骼动画制作的libgdx游戏
(官网:www.libgdx.cn) Super Spineboy是一个使用Spine和libgdx开发的跨平台游戏(Windows,Mac,Linux),Spine是一个2D游戏动画工具.Super ...
- 网站开发进阶(三十二)HTML5之FileReader的使用
HTML5之FileReader的使用 HTML5定义了FileReader作为文件API的重要成员用于读取文件,根据W3C的定义,FileReader接口提供了读取文件的方法和包含读取结果的事件模型 ...
- 【一天一道LeetCode】#54. Spiral Matrix
一天一道LeetCode系列 (一)题目 Given a matrix of m x n elements (m rows, n columns), return all elements of th ...
- wing带你玩转自定义view系列(2) 简单模仿qq未读消息去除效果
上一篇介绍了贝塞尔曲线的简单应用 仿360内存清理效果 这一篇带来一个 两条贝塞尔曲线的应用 : 仿qq未读消息去除效果. 转载请注明出处:http://blog.csdn.net/wingicho ...
- Android实训案例(六)——四大组件之一BroadcastReceiver的基本使用,拨号,短信,SD卡,开机,应用安装卸载监听
Android实训案例(六)--四大组件之一BroadcastReceiver的基本使用,拨号,短信,SD卡,开机,应用安装卸载监听 Android中四大组件的使用时重中之重,我这个阶段也不奢望能把他 ...
- Java-ServletConfig
/** * * A servlet configuration object used by a servlet container * to pass information to a servle ...