【BZOJ4916】神犇和蒟蒻(杜教筛)
【BZOJ4916】神犇和蒟蒻(杜教筛)
题面
BZOJ
求
\]
其中$$n<=10^9$$
题解
第一问
搞笑的
不会做?
算了。。
还是说一下:
想想\(\mu(x)\)是怎么算的???
既然是\(i^2\),每个因数的个数一定不会是\(1\)
所以除了\(\mu(1)\)外一定都是\(0\)
所以第一问的答案一定是\(1\)
第二问:
先看看要求的是什么
\(\varphi(i^2)=i*\varphi(i)\)
为啥???
想想你线性筛是怎么写的,那么这个东西就很明显了。
\(10^9\)的范围
看着就不能线性筛
于是想到了杜教筛
设\(f(i)=\varphi(i^2)=i\varphi(i)\)
\(S(n)=\sum_{i=1}^nf(i)\)
现在先搞一个\(g(x)\)出来,可以推出式子
(难道这就是杜教筛的套路式子吗??)
\]
现在要做的就是构造一个\(g(x)\)使得前面那玩意很好算
看一看\(f(i)=i\varphi(i)\)
往\(\varphi(i)\)的性质上面靠:
\(\sum_{d|i}\varphi(d)=i\)
要让$$(f*g)(i)=\sum_{d|i}f(d)g(\frac{i}{d})$$好算前缀和
直接写一下:
\]
要是能够把\(d\)给搞掉多好,所以\(g(\frac{i}{d})\)最好能够把\(d\)搞掉
发现令\(g(x)=x\)就可以啦
\]
\]
\]
\]
这个玩意的前缀和多好算
\]
所以把那个我认为的杜教筛的套路式子拿出来
\]
\]
看起来可以杜教筛了嗷。。。
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define MAX 10000000
#define MOD 1000000007
int n,N;
int pri[MAX+10],phi[MAX+10],tot,inv=166666668;
bool zs[MAX+10];
map<int,int> M;
void pre(int N)
{
zs[1]=true;phi[1]=1;
for(int i=2;i<=N;++i)
{
if(!zs[i])pri[++tot]=i,phi[i]=i-1;
for(int j=1;j<=tot&&i*pri[j]<=N;++j)
{
zs[i*pri[j]]=true;
if(i%pri[j])phi[i*pri[j]]=1ll*phi[i]*phi[pri[j]]%MOD;
else{phi[i*pri[j]]=1ll*phi[i]*pri[j]%MOD;break;}
}
}
for(int i=1;i<=N;++i)phi[i]=(1ll*i*phi[i]%MOD+phi[i-1])%MOD;
}
int S(int x)
{
if(x<=N)return phi[x];
if(M[x])return M[x];
int ret=1ll*x*(x+1)%MOD*(x+x+1)%MOD*inv%MOD;
for(int i=2,j;i<=x;i=j+1)
{
j=x/(x/i);
int tt=1ll*(i+j)*(j-i+1)/2%MOD;
ret-=1ll*tt*S(x/i)%MOD;
ret%=MOD;
}
return M[x]=(ret+MOD)%MOD;
}
int main()
{
scanf("%d",&n);puts("1");
pre(N=min(n,MAX));
printf("%d\n",S(n));
return 0;
}
【BZOJ4916】神犇和蒟蒻(杜教筛)的更多相关文章
- BZOJ4916: 神犇和蒟蒻(杜教筛)
题意 求 $$\sum_{i = 1}^n \mu(i^2)$$ $$\sum_{i = 1}^n \phi(i^2)$$ $n \leqslant 10^9$ Sol zz的我看第一问看了10min ...
- [BZOJ4916]神犇和蒟蒻 杜教筛/Min_25筛
题目大意: 给定\(n\le 10^9\),求: 1.\(\sum_{i=1}^n\mu(i^2)\) 2.\(\sum_{i=1}^n\varphi(i^2)\) 解释 1.\(\sum_{i=1} ...
- 【BZOJ4916】神犇和蒟蒻 杜教筛
题目传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=4916 第一个询问即求出$\sum_{i=1}^{n} { \mu (i^2)} $,考虑 ...
- LG4213 【模板】杜教筛(Sum)和 BZOJ4916 神犇和蒟蒻
P4213 [模板]杜教筛(Sum) 题目描述 给定一个正整数$N(N\le2^{31}-1)$ 求 $$ans_1=\sum_{i=1}^n\varphi(i)$$ $$ans_2=\sum_{i= ...
- BZOJ4916: 神犇和蒟蒻【杜教筛】
Description 很久很久以前,有一只神犇叫yzy; 很久很久之后,有一只蒟蒻叫lty; Input 请你读入一个整数N;1<=N<=1E9,A.B模1E9+7; Output 请你 ...
- BZOJ4916 神犇和蒟蒻 【欧拉函数 + 杜教筛】
题目 很久很久以前,有一只神犇叫yzy; 很久很久之后,有一只蒟蒻叫lty; 输入格式 请你读入一个整数N;1<=N<=1E9,A.B模1E9+7; 输出格式 请你输出一个整数A=\sum ...
- BZOJ4916 神犇和蒟蒻(欧拉函数+杜教筛)
第一问是来搞笑的.由欧拉函数的计算公式容易发现φ(i2)=iφ(i).那么可以发现φ(n2)*id(n)(此处为卷积)=Σd*φ(d)*(n/d)=nΣφ(d)=n2 .这样就有了杜教筛所要求的容易算 ...
- Bzoj4916: 神犇和蒟蒻
题面 传送门 Sol 第一问puts("1") 第二问,\(\varphi(i^2)=i\varphi(i)\) 设\(\phi(n)=\sum_{i=1}^{n}i\varphi ...
- 【BZOJ4916】神犇和蒟蒻 解题报告
[BZOJ4916]神犇和蒟蒻 Description 很久很久以前,有一群神犇叫sk和ypl和ssr和hjh和hgr和gjs和yay和xj和zwl和dcx和lyy和dtz和hy和xfz和myh和yw ...
随机推荐
- 静态成员static
静态成员分为静态数据成员和静态函数成员: 静态数据成员: 1.用关键字static来声明: 2.该类的所有对象维护改成员的同一份拷贝:(就是说所有的对象看到的是同一份数据) 3.必须在类外定义和初始化 ...
- 使用requireJS
什么是require? require是AMD模块化规范的具体实现. 目前,通行的js模块化规范有两种,CommonJS和AMD. CommonJS和AMD有什么不同呢? CommonJS主要用于服务 ...
- PLECS—晶闸管-第九周
1. 单相桥式晶闸管整流电路仿真 (1)仿真电路图 (2)触发角为pi/4的手工波形图(参数设置,触发角=pi/4, 电感L = 0H) (2)模拟仿真波形图 1)参数设置:触发角=pi/4, 电感L ...
- C# decimal 去掉小数点后的无效0
c#去掉小数点后的无效0 decimal d = 0.0500m; d.ToString("0.##")就出来了 也可以这样 string.Format("{0:0.## ...
- os模块中关于文件/目录常用的函数使用方法
os模块中关于文件/目录常用的函数使用方法 函数名 使用方法 getcwd() 返回当前工作目录 chdir(path) 改变工作目录 listdir(path='.') 列举指定目录中的文件名('. ...
- bzoj 1171 大sz的游戏& 2892 强袭作战 (线段树+单调队列+永久性flag)
大sz的游戏 Time Limit: 50 Sec Memory Limit: 357 MBSubmit: 536 Solved: 143[Submit][Status][Discuss] Des ...
- UVA1619 栈维护递增序列
先说这题的关键性质:每一个数应该只会计算一次,它有一个最小区间[L,R],即它在这个区间内是最小的,最小区间内任何包含它的子区间都不会大于F(L,R)=(a[L]+...+a[R])*min(a[l] ...
- Spring 代理对象,cglib,jdk的问题思考,AOP 配置注解拦截 的一些问题.为什么不要注解在接口,以及抽象方法.
可以被继承 首先注解在类上是可以被继承的 在注解上用@Inherited /** * Created by laizhenwei on 17:49 2017-10-14 */ @Target({Ele ...
- Hibernate5环境搭建
1.导包 Hibernate开发包 数据库的驱动包 2.核心配置文件 核心配置文件(赋值到src下) 1.核心配置文件 对于hibernate的核心配置文件它有两种方式(选其中一种即可 ...
- kolla管理openstack容器
本文以nova-api容器为例,说明kolla如何将nova-api配置文件传入容器,容器如何启动nova-api服务并读取配置文件 注:第一部分比较无趣,二三部分 会有意思一些 1. nova-ap ...