【BZOJ4555】求和(第二类斯特林数,组合数学,NTT)

题面

BZOJ

题解

推推柿子

\[\sum_{i=0}^n\sum_{j=0}^iS(i,j)·j!·2^j
\]

\[=\sum_{i=0}^n\sum_{j=0}^nS(i,j)·j!·2^j
\]

\[=\sum_{i=0}^n\sum_{j=0}^nj!·2^j(\frac{1}{j!}\sum_{k=0}^j(-1)^k·C_j^k·(j-k)^i)
\]

\[=\sum_{j=0}^n2^j\sum_{k=0}^j(-1)^k·C_j^k·\sum_{i=0}^n(j-k)^i
\]

\[=\sum_{j=0}^n2^j\sum_{k=0}^j(-1)^k·\frac{j!}{k!(j-k)!}·\sum_{i=0}^n(j-k)^i
\]

\[=\sum_{j=0}^n2^j·j!\sum_{k=0}^j\frac{(-1)^k}{k!}\frac{\sum_{i=0}^n(j-k)^i}{(j-k)!}
\]

上面是一个等比数列求和

\[=\sum_{j=0}^n2^j·j!\sum_{k=0}^j\frac{(-1)^k}{k!}\frac{(j-k)^{n+1}-1}{(j-k)!(j-k-1)}
\]

发现后面的东西是一个卷积

可以\(O(nlogn)\)预处理

然后就可以\(O(n)\)算答案了

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define ll long long
#define RG register
#define MOD 998244353
#define MAX 500000
const int pr=3;
const int phi=MOD-1;
int fpow(int a,int b)
{
int s=1;
while(b){if(b&1)s=1ll*s*a%MOD;a=1ll*a*a%MOD;b>>=1;}
return s;
}
int r[MAX],N,M,l;
int jc[MAX],inv[MAX];
int a[MAX],b[MAX],S[MAX];
void NTT(int *P,int opt)
{
for(int i=0;i<N;++i)if(i<r[i])swap(P[i],P[r[i]]);
for(int i=1;i<N;i<<=1)
{
int W=fpow(pr,phi/(i<<1));
for(int p=i<<1,j=0;j<N;j+=p)
{
int w=1;
for(int k=0;k<i;++k,w=1ll*w*W%MOD)
{
int X=P[j+k],Y=1ll*w*P[i+j+k]%MOD;
P[j+k]=(X+Y)%MOD;P[i+j+k]=((X-Y)%MOD+MOD)%MOD;
}
}
}
if(opt==-1)reverse(&P[1],&P[N]);
}
void Work()
{
M+=N;
for(N=1;N<=M;N<<=1)++l;
for(int i=0;i<N;++i)r[i]=(r[i>>1]>>1)|((i&1)<<(l-1));
NTT(a,1);NTT(b,1);
for(int i=0;i<N;++i)a[i]=1ll*a[i]*b[i]%MOD;
NTT(a,-1);
for(int i=0,inv=fpow(N,MOD-2);i<N;++i)a[i]=1ll*a[i]*inv%MOD;
}
int n,ans;
int main()
{
scanf("%d",&n);
N=M=n;
jc[0]=inv[0]=1;
for(int i=1;i<=n;++i)jc[i]=1ll*jc[i-1]*i%MOD;
for(int i=1;i<=n;++i)inv[i]=fpow(jc[i],MOD-2);
for(int i=0;i<=n;++i)a[i]=(i&1)?-1:1;
for(int i=0;i<=n;++i)a[i]=(1ll*a[i]*inv[i]%MOD+MOD)%MOD;
for(int i=2;i<=n;++i)b[i]=(fpow(i,n+1)-1+MOD)%MOD;
for(int i=2;i<=n;++i)b[i]=1ll*b[i]*inv[i]%MOD;
for(int i=2;i<=n;++i)b[i]=1ll*b[i]*fpow(i-1,MOD-2)%MOD;
b[0]=1;b[1]=n+1;
Work();
for(int i=0,p=1;i<=n;++i,p=(p+p)%MOD)ans=(ans+1ll*jc[i]*p%MOD*a[i]%MOD)%MOD;
printf("%d\n",ans);
return 0;
}

【BZOJ4555】求和(第二类斯特林数,组合数学,NTT)的更多相关文章

  1. 【洛谷2791】幼儿园篮球题(第二类斯特林数,NTT)

    [洛谷2791]幼儿园篮球题(第二类斯特林数,NTT) 题面 洛谷 题解 对于每一组询问,要求的东西本质上就是: \[\sum_{i=0}^{k}{m\choose i}{n-m\choose k-i ...

  2. bzoj 4555 [Tjoi2016&Heoi2016] 求和 —— 第二类斯特林数+NTT

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4555 关于第二类斯特林数:https://www.cnblogs.com/Wuweizhen ...

  3. BZOJ 4555:[TJOI2016&HEOI2016]求和(第二类斯特林数+NTT)

    题目链接 \(Description\) 求 \[\sum_{i=0}^n\sum_{j=0}^iS(i,j)2^jj!\]对998244353取模后的结果. \(n<=10^5\) \(Sol ...

  4. [HEOI2016/TJOI2016]求和(第二类斯特林数)

    题目 [HEOI2016/TJOI2016]求和 关于斯特林数与反演的更多姿势\(\Longrightarrow\)点这里 做法 \[\begin{aligned}\\ Ans&=\sum\l ...

  5. [HEOI2016/TJOI2016]求和——第二类斯特林数

    给你斯特林数就换成通项公式,给你k次方就换成斯特林数 考虑换成通项公式之后,组合数没有什么好的处理方法 直接拆开,消一消阶乘 然后就发现了(j-k)和k! 往NTT方向靠拢 然后大功告成 其实只要想到 ...

  6. 【BZOJ4555】【TJOI2016】【HEOI2016】求和 第二类斯特林数 NTT

    题目大意 求\(f(n)=\sum_{i=0}^n\sum_{j=0}^i2^j\times j!\times S(i,j)\\\) 对\(998244353\)取模 \(n\leq 100000\) ...

  7. BZOJ 4555 Luogu P4091 [HEOI2016/TJOI2016]求和 (第二类斯特林数)

    题目链接 (luogu) https://www.luogu.org/problem/P4091 (bzoj) https://www.lydsy.com/JudgeOnline/problem.ph ...

  8. 【bzoj4555】[Tjoi2016&Heoi2016]求和(NTT+第二类斯特林数)

    传送门 题意: 求 \[ f(n)=\sum_{i=0}^n\sum_{j=0}^i\begin{Bmatrix} i \\ j \end{Bmatrix}2^jj! \] 思路: 直接将第二类斯特林 ...

  9. BZOJ4555 [Tjoi2016&Heoi2016]求和 【第二类斯特林数 + NTT】

    题目 在2016年,佳媛姐姐刚刚学习了第二类斯特林数,非常开心. 现在他想计算这样一个函数的值: S(i, j)表示第二类斯特林数,递推公式为: S(i, j) = j ∗ S(i − 1, j) + ...

随机推荐

  1. 用UltraISO制作CentOS U盘安装盘

    1    下载UltraISO 网上有很多版本,下个绿色版的就ok了. 下载地址:http://www.pc6.com//softview/SoftView_13698.html 2    下载Cen ...

  2. TensorFlow实战之实现AlexNet经典卷积神经网络

    本文根据最近学习TensorFlow书籍网络文章的情况,特将一些学习心得做了总结,详情如下.如有不当之处,请各位大拿多多指点,在此谢过. 一.AlexNet模型及其基本原理阐述 1.关于AlexNet ...

  3. Javascript获取数组中最大和最小值

    取出数组中最大值或最小值是开发中常见的需求,今天继续讲解如何获取javascript数组中最大和最小值. 1.排序法 首先我们给数组进行排序,可以按照从小到大的顺序来排,排序之后的数组中第一个和最后一 ...

  4. 搭建ssr服务器

    搭建ssr服务器 首先,先说一下,为什么这么久没写博客. 一方面,最近在搭建自己的服务器.挺忙的. 另一方面,写了许多有关服务器构建,网站构建的word.但没有润色,所以打算等自己服务器做好了整理一下 ...

  5. 让互联网更快:新一代QUIC协议在腾讯的技术实践分享

    本文来自腾讯资深研发工程师罗成在InfoQ的技术分享. 1.前言 如果:你的 App,在不需要任何修改的情况下就能提升 15% 以上的访问速度,特别是弱网络的时候能够提升 20% 以上的访问速度. 如 ...

  6. java-redis列表数据操作示例(二)

    接上篇博文<java-redis字符类数据操作示例(一)>,redis连接管理类的代码请跳转查看. 一.列表类型缓存测试类 public class ListTest { /** * 主测 ...

  7. ubuntu17.10 安装firefox的flash

    1. flash下载地址:https://get.adobe.com/flashplayer/ 2. 选择tar.gz for linux 3. 下载后解压tar包.里面有个libflashplaye ...

  8. 通过 Service 访问 Pod - 每天5分钟玩转 Docker 容器技术(136)

    本节开始学习 Service.我们不应该期望 Kubernetes Pod 是健壮的,而是要假设 Pod 中的容器很可能因为各种原因发生故障而死掉.Deployment 等 controller 会通 ...

  9. Android浏览器访问java web的方法

    以前自己也做过Android程序,可以和服务器通信,通过json来存取数据,当时是在APP中直接存取数据的,而这次我打算在手机浏览器中获得服务器传过来的Json参数,后来才发现其实很简单的,首先需要手 ...

  10. UVA - 11624 多点bfs [kuangbin带你飞]专题一

    题意:某人身陷火场,总有k个点着火,着火点可向四周扩散,问此人能否逃离. 思路:可能有多个着火点,以这些着火点作为起点进行bfs,得到整个火场的最短距离,然后又以人所在坐标作为起点进行bfs,得到该人 ...