hihocoder Challenge 29 B.快速乘法
这题的题解和我写的有一拼,异常简洁,爆炸。
这题思路dp
dp[i][j] 表示的是讨论到第n位,并比原数的前n位多了 j∗2i
显然j只能取0,1,毕竟2进制嘛
之后转移就好了,注意下面两个重要状态
dp[i][1]=dp[i][0]+2
dp[i][0]=dp[i][1]+2
#include <cstdio>
#include <cstring>
#include <vector>
#include <iostream>
#include <queue>
using namespace std;
const int N = 1e6+5;
const int MOD = 998244353;
const int INF = 0x3f3f3f3f;
char s[N];
int dp[N][2];
void gmin(int &a, int b) {
if(a > b) a = b;
}
int main() {
while(~scanf("%s", s)) {
int len = strlen(s);
memset(dp, INF, sizeof(dp));
for(int i = len+1; i >= 2; --i) s[i] = s[i-2];
// for(int i = 2; i < len+2; ++i) printf("%c", s[i]); printf("\n");
s[1] = '0'; s[len+2] = '0';
// for(int i = 2; i <= len+1; ++i) printf("%c", s[i]); printf("\n");
dp[0][0] = 0;
for(int i = 1; i <= len+2; ++i) {
for(int j = 0; j < 2; ++j) {
// if(dp[i-1][j] == INF) continue;
if(j == 0) {
if(s[i] == '0') {
gmin(dp[i][0], dp[i-1][0]);
gmin(dp[i][1], dp[i-1][0] + 2);
} else {
gmin(dp[i][0], dp[i-1][0] + 2);
}
}else {
if(s[i] == '0') {
gmin(dp[i][1], dp[i-1][1] + 2);
}else {
gmin(dp[i][0], dp[i-1][1] + 2);
gmin(dp[i][1], dp[i-1][1]);
}
}
}
// printf("%d:%d %d\n", i, dp[i][0], dp[i][1]);
}
printf("%d\n", dp[len+2][0]-1);
}
return 0;
}
hihocoder Challenge 29 B.快速乘法的更多相关文章
- hihocoder Challenge 29 A.序列的值
我现在就感觉我这人现在真的没有dp的意识 其实真写起来也不难,但是把就是练的少思维跟不上,dp从根本上就是一种状态的提炼和聚集. 按照题解的意思来,表示二进制第i位的值为j(0,1)的组合有多少,然后 ...
- hihocoder Challenge 29 D. 不上升序列
这场爆零比赛题目还是要补的 这道题据说是出烂掉的原题,我找了下 CF13.C/ CF371 div1 C,一模一样 我服这群原题大佬 为 当时,使 不严格递增的最小步数,那么 Otherwise 显然 ...
- HDU 5768 Lucky7 (中国剩余定理 + 容斥 + 快速乘法)
Lucky7 题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5768 Description When ?? was born, seven crow ...
- 【中国剩余定理】【容斥原理】【快速乘法】【数论】HDU 5768 Lucky7
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5768 题目大意: T组数据,求L~R中满足:1.是7的倍数,2.对n个素数有 %pi!=ai 的数 ...
- 快速幂&快速乘法
尽管快速幂与快速乘法好像扯不上什么关系,但是东西不是很多,就一起整理到这里吧 快速幂思想就是将ax看作x个a相乘,用now记录当前答案,然后将指数每次除以2,然后将当前答案平方,如果x的2进制最后一位 ...
- [BZOJ4002][JLOI2015]有意义的字符串-[快速乘法+矩阵乘法]
Description 传送门 Solution 由于这里带了小数,直接计算显然会爆掉,我们要想办法去掉小数. 而由于原题给了暗示:b2<=d<=(b+1)2,我们猜测可以利用$(\fra ...
- 整数快速乘法/快速幂+矩阵快速幂+Strassen算法
快速幂算法可以说是ACM一类竞赛中必不可少,并且也是非常基础的一类算法,鉴于我一直学的比较零散,所以今天用这个帖子总结一下 快速乘法通常有两类应用:一.整数的运算,计算(a*b) mod c 二.矩 ...
- 快速乘法,幂计算 hdu5666
在实际应用中为了防止数据爆出,在计算a*b%m和x^n%m时,可以采用此方法.在数论中有以下结论: a*b%m=((a%m)*(b*m))%m ; (a+b)%m=(a%m+b%m)%m ; _int ...
- HDU 5768Lucky7(多校第四场)容斥+中国剩余定理(扩展欧几里德求逆元的)+快速乘法
地址:http://acm.hdu.edu.cn/showproblem.php?pid=5768 Lucky7 Time Limit: 2000/1000 MS (Java/Others) M ...
随机推荐
- CF 208E. Blood Cousins [dsu on tree 倍增]
题意:给出一个森林,求和一个点有相同k级祖先的点有多少 倍增求父亲然后和上题一样还不用哈希了... #include <iostream> #include <cstdio> ...
- python+opencv2相机位姿估计
最近在做基于图像的室内定位方面的研究,于是使用到了百度最新的室内数据库Image-based Localization (IBL) .由于该数据库给出的数据是每幅图像和其对应相机的内外参数和光心投影方 ...
- qt中的udp编程
UDP QUdpSocket ---> upd socket 1.创建 QUdpSocket *p = new QUdpSocket(); 2.最先接收数据一方 调用bind-> ip/p ...
- git服务器配置http请求
使用apache 配置http协议的git库 在CentOS上基于Apache http服务搭建git远程仓库(一) 基于http方式的git服务器搭建 搭建http协议的git服务器 Linux g ...
- PHP Extension开发(Zephir版本)
上篇介绍了C语言开发PHP扩展的方法, 现在介绍使用Zephir开发扩展的方法. 关于Zephir需要简单介绍一下: Zephir 是为PHP开发人员提供的能够编写可编译/静态类型的高级语言.是优秀的 ...
- mysql 查找某个表在哪个库
SELECT table_schema FROM information_schema.TABLES WHERE table_name = '表名';
- php获取今日开始时间戳和结束时间戳
1.php获取今日开始时间戳和结束时间戳 $beginToday=mktime(0,0,0,date('m'),date('d'),date('Y'));$endToday=mktime(0,0,0 ...
- Python基本格式化输出
什么叫格式化输出? 数据按照某种特殊的要求输出 假如输入一个整数,希望整数按照十六进制,八进制输出,如果输入一个小数,希望小数保留后面2位数然后输出,或者以科学计数法的方式来输出小数.字符串的输出希望 ...
- 加入GIMPS项目,寻找梅森素数!
截止到目前为止人类共找到了50个梅森素数,其中最后16个梅森素数都是通过GIMPS项目找到的. 为了激励人们寻找梅森素数和促进网格技术发展,总部设在美国旧金山的电子前沿基金会(EFF)于1999年3月 ...
- node.js简单搭建服务,访问本地站点文件
1.安装nodejs服务(从官网下载安装),node相当于apache服务器 2.在自己定义的目录下新建服务器文件如 server.js 例如,我在D:\nodeJs下创建了server.js文件 v ...