链接:https://ac.nowcoder.com/acm/contest/549/E
来源:牛客网

时间限制:C/C++ 1秒,其他语言2秒
空间限制:C/C++ 262144K,其他语言524288K
64bit IO Format: %lld

题目描述

小A来到了一个陌生的城镇,这个城镇与其它城镇之间构成了集群。城镇之间的路径都是单向的,而小A每一天都能由一个城镇走到另外一个城镇。小A将会连续走k天,直到抵达某个城镇。也许他并不能走到这个城镇,那么可以认为不存在这样的路径,也就是路径数为0。否则就会有若干条路径可以抵达某个城镇。现在他想知道,如果他从给定某个城市出发,k天之后到达其它城镇的路径的总和是多少。数据不保证没有重边,也就是说可能每一天从一个城镇到另外一个城镇之间会有多条路径。路径总和可能会非常大,对答案模上1000000007。

输入描述:

第一行三个整数N,M,K,S分别表示一共有N个城镇,城镇之间有M条单向边。K表示小A连续走K天。S表示小A出发的那个城镇。接下来的M行每行两个整数u,v表示从城镇u连了一条有向边到城镇v。第一行三个整数N,M,K,S分别表示一共有N个城镇,城镇之间有M条单向边。K表示小A连续走K天。S表示小A出发的那个城镇。接下来的M行每行两个整数u,v表示从城镇u连了一条有向边到城镇v。

输出描述:

一行输出一个结果,表示小A到其余城镇路径数的总和。一行输出一个结果,表示小A到其余城镇路径数的总和。
示例1

输入

复制

4 5 2 1
1 2
1 3
2 3
4 1
3 4

输出

复制

2

说明

经过2天,小A可以走到3号城镇或者4号城镇,到3号城镇的路径有一条是1-2-3,到4号城镇的路径也是一条是1-3-4,共计有两条路径。

备注:

1≤N≤100, 1≤K≤1e91≤N≤100, 1≤K≤1e9
 
解题思路:建立一个矩阵,用以表示任意两个顶点之间是否有边,如果有矩阵上就为1,反之为0。
那么此时如果 这个矩阵乘这个矩阵,意思就成了这个矩阵u到w长度为1的个数乘上w到v长度为1的个数,也就成了长度为2的个数的多少(边取得任意多次)。
此时得到的k=2的矩阵,这个矩阵乘长度为1的矩阵还是这个矩阵u到w长度为2的个数乘上w到v长度为1的个数,也就是长度为3的矩阵个数
这么乘可以用快速幂求出
代码;

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int mod=1e9+;
int n,m,k,s;
struct Matrix{
ll a[][];
Matrix(){
memset(a,,sizeof(a));
}
Matrix operator *(const Matrix & x)const{
Matrix ans;
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
for(int k=;k<=n;k++)
ans.a[i][j]=(ans.a[i][j]+a[i][k]*x.a[k][j])%mod;
return ans;
}
};
Matrix mp,res;
void qpow(int y){
for(int i=;i<=n;i++)res.a[i][i]=;
while(y){
if(y&) res=res*mp;
mp=mp*mp;
y>>=;
}
}
int main(){
cin>>n>>m>>k>>s;
for(int i=;i<=m;i++){
int u,v;
cin>>u>>v;
mp.a[u][v]++;
}
qpow(k);
ll ans=;
for(int i=;i<=n;i++){
if(i!=s) ans=(ans+res.a[s][i])%mod;
}
cout<<ans<<endl;
return ;
}

小白月赛13 小A的路径 (矩阵快速幂求距离为k的路径数)的更多相关文章

  1. POJ-3070Fibonacci(矩阵快速幂求Fibonacci数列) uva 10689 Yet another Number Sequence【矩阵快速幂】

    典型的两道矩阵快速幂求斐波那契数列 POJ 那是 默认a=0,b=1 UVA 一般情况是 斐波那契f(n)=(n-1)次幂情况下的(ans.m[0][0] * b + ans.m[0][1] * a) ...

  2. codeforce 227E 矩阵快速幂求斐波那契+N个连续数求最大公约数+斐波那契数列的性质

    E. Anniversary time limit per test2 seconds memory limit per test256 megabytes inputstandard input o ...

  3. Educational Codeforces Round 13 D. Iterated Linear Function (矩阵快速幂)

    题目链接:http://codeforces.com/problemset/problem/678/D 简单的矩阵快速幂模版题 矩阵是这样的: #include <bits/stdc++.h&g ...

  4. poj3070矩阵快速幂求斐波那契数列

      Fibonacci Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 13172   Accepted: 9368 Desc ...

  5. hdu4686 简单的矩阵快速幂求前n项和

    HDU4686 题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4686 题意:题目说的很清楚了,英语不好的猜也该猜懂了,就是求一个表达式的前n项和,矩阵 ...

  6. HDU 1005 Number Sequence【斐波那契数列/循环节找规律/矩阵快速幂/求(A * f(n - 1) + B * f(n - 2)) mod 7】

    Number Sequence Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)T ...

  7. UVA - 10689 Yet another Number Sequence (矩阵快速幂求斐波那契)

    题意:已知f(0) = a,f(1) = b,f(n) = f(n − 1) + f(n − 2), n > 1,求f(n)的后m位数. 分析:n最大为109,矩阵快速幂求解,复杂度log2(1 ...

  8. 小白月赛13 小A的柱状图 (单调栈)

    链接:https://ac.nowcoder.com/acm/contest/549/H来源:牛客网 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 262144K,其他语言52428 ...

  9. NYOJ-676小明的求助,快速幂求模,快速幂核心代码;

    小明的求助 时间限制:2000 ms  |  内存限制:65535 KB 难度:2 描述 小明对数学很有兴趣,今天老师出了道作业题,让他求整数N的后M位,他瞬间感觉老师在作弄他,因为这是so easy ...

随机推荐

  1. 详解RPC远程调用和消息队列MQ的区别

    PC(Remote Procedure Call)远程过程调用,主要解决远程通信间的问题,不需要了解底层网络的通信机制. RPC框架 知名度较高的有Thrift(FB的).dubbo(阿里的). RP ...

  2. OO第二单元总结

    这一单元作业是围绕电梯调度进行展开,并引进了多线程的概念.与第一次作业比较类似,作业难度也是逐渐推进,从最开始的单部电梯先来先服务(傻瓜式调度),到之后的单部电梯可稍带调度,到最后的多部电梯分楼层调度 ...

  3. UML学习——类之间的关系

    参考:UML图中类之间的关系:依赖,泛化,关联,聚合,组合,实现 空心菱形为聚合关系:部分与整体,部分可有可无.部分可以单独存在(车子和引擎,引擎可以单独存在) 实心菱形为组合关系:部分与整体,但是部 ...

  4. C++系列总结——封装

    前言 众所周知,封装.继承和多态是面向对象编程的三大特性.C++作为一门面向对象的编程语言,自然支持了这些特性,但C++是如何实现这些特性的呢?今天先说下我理解的封装. 封装 通常我们会把下面的行为也 ...

  5. PHP+nginx 启动后访问超时

    场景 在Windows上, nginx配置并启动后, 访问报504超时 解决 很尴尬, php-cgi没启动 php-cgi -b

  6. 【Spring Cloud笔记】 Eureka通过集群实现高可用

    Eureka实现服务注册与发现,在Spring Cloud微服务中起着关键性的作用,必须保障其高可用,常规方案无非通过集群实现.这里在本地机器搭建一个伪集群环境,通过两个节点实现相互注册,并通过主备数 ...

  7. Linux学习历程——Centos 7 diff命令

    一.命令介绍 diff命令用于比较文本差异. diff以逐行的方式,比较文本文件的异同处.如果指定要比较目录,则diff会比较目录中相同文件名的文件,但不会比较其中子目录. ------------- ...

  8. Python之excel文件追加内容

    首先要安装三个模块:xlrd,xlwt,xlutils 命令:pip install xlrd xlwt xlutils 示例代码: #!/usr/bin/env python # -*- codin ...

  9. Windows服务器如何查看共享目录信息

    查看Windows服务器上的共享目录的相关信息,可以使用两种方式: 1:命令net share 查看: 2:通过计算机管理的Shared Folders查看

  10. 前端部署ant+yuicompressor文件压缩+获取版本+SSH公布(部分代码)

    文件压缩: <apply executable="java" parallel="false" failonerror="true" ...