Description

对于任何正整数x,其约数的个数记作g(x)。例如g(1)=1、g(6)=4。
如果某个正整数x满足:g(x)>g(i) 0<i<x,则称x为反质数。例如,整数1,2,4,6等都是反质数。
现在给定一个数N,你能求出不超过N的最大的反质数么?

Input

一个数N(1<=N<=2,000,000,000)。

Output

不超过N的最大的反质数。

Sample Input

1000

Sample Output

840

题解

拿到题首先准确无误地题干看错,以为是质因数个数...

这道题其实还是很好做的。首先我们要知道一个定理:

对任一整数$a>1$,有$a={p_1}^{a_1}{p_2}^{a_2}…{p_n}^{a_n}$,其中$p_1<p_2<…<p_n$均为素数,而$a_1$,$a_2$…,$a_n$是正整数。

$a$的正约数个数为:$(1+a_1)(1+a_2)…(1+a_n)$

我们很容易得到一个结论:由于这道题实际上是求$1~n$中因数最多的数中最小的。

从反素数的定义中可以看出两个性质:

(1)一个反素数的所有质因子必然是从$2$开始的连续若干个质数,因为反素数是保证约数个数为的这个数尽量小

(2)同样的道理,如果,那么必有

我们发现:

$2×3×5×7×11×13×17×19×23×29$

$=6,469,693,230>2,000,000,000$

显然只要用这十个数进行讨论就好了。

我们发现之前那个式子中$p$是不好讨论的,那么我们就用搜索实现了。

如果还是不太理解->戳我<-

 #include<map>
#include<set>
#include<ctime>
#include<cmath>
#include<queue>
#include<stack>
#include<cstdio>
#include<string>
#include<vector>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#define LL long long
#define RE register
#define IL inline
using namespace std;
const LL prime[]={,,,,,,,,,}; LL n,ans,maxn; void Dfs(LL pn,LL cnt,LL cen); int main()
{
scanf("%lld",&n);
Dfs(,,);
printf("%lld\n",ans);
return ;
} void Dfs(LL pn,LL cnt,LL cen)
{
if (pn>maxn) maxn=pn,ans=cnt;
if (pn==maxn&&cnt<ans) ans=cnt;
if (cen==) return;
LL a=;
for (RE LL i=;;i++)
{
if (cnt*a>n) break;
Dfs(pn*(i+),cnt*a,cen+);
a*=prime[cen];
}
}

[HAOI 2007]反素数ant的更多相关文章

  1. [BZOJ 1053] [HAOI 2007] 反素数ant

    题目链接:BZOJ 1053 想一想就会发现,题目让求的 1 到 n 中最大的反素数,其实就是 1 到 n 中因数个数最多的数.(当有多于一个的数的因数个数都为最大值时,取最小的一个) 考虑:对于一个 ...

  2. bzoj 1053 [ HAOI 2007 ] 反素数ant ——暴搜

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1053 试图打表找规律,但无果... 看TJ了,暴搜: 注意参数 w 是 long long. ...

  3. 【BZOJ】【1053】【HAOI2007】反素数ant

    搜索 经典搜索题目(其实是蒟蒻只会搜……vfleaking好像有更优秀的做法?) 枚举质数的幂,其实深度没多大……因为$2^32$就超过N了……而且质数不能取的太大,所以不会爆…… /******** ...

  4. BZOJ 1053: [HAOI2007]反素数ant dfs

    1053: [HAOI2007]反素数ant 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=1053 Description 对于任何正整 ...

  5. bzoj1053: [HAOI2007]反素数ant

    51nod有一道类似的题...我至今仍然不会写暴搜!!! #include<cstdio> #include<cstring> #include<iostream> ...

  6. 【BZOJ】1053: [HAOI2007]反素数ant

    1053: [HAOI2007]反素数ant Description: g(x)表示x的约数个数,反素数:对于任意的i (i < x),均有g(i) < g(x),则x为反素数:现在输入不 ...

  7. bzoj 1053: [HAOI2007]反素数ant 搜索

    1053: [HAOI2007]反素数ant Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1497  Solved: 821[Submit][Sta ...

  8. BZOJ 1053 [HAOI2007]反素数ant

    1053: [HAOI2007]反素数ant Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1948  Solved: 1094[Submit][St ...

  9. 1053: [HAOI2007]反素数ant

    1053: [HAOI2007]反素数ant Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3480  Solved: 2036[Submit][St ...

随机推荐

  1. JavaScript(第二十八天)【Cookie与存储】

    随着Web越来越复杂,开发者急切的需要能够本地化存储的脚本功能.这个时候,第一个出现的方案:cookie诞生了.cookie的意图是:在本地的客户端的磁盘上以很小的文件形式保存数据.   一.Cook ...

  2. 结对作业NO.2

    结对NO.2 1. 引言 1.1 项目地址 github 生成的一组好数据 1.2 项目简介 按照老师给的项目要求:"编码实现一个部门与学生的智能匹配的程序".由于数据需要自己生成 ...

  3. Beta冲刺第六天

    一.昨天的困难 没有困难. 二.今天进度 1.林洋洋:更新申请ip为域名,去除druid数据源统计 2.黄腾达:协作详情中添加成员对话框优化 3.张合胜:修复侧栏菜单mini状态下不能显示问题 三.明 ...

  4. Archlinux安装和使用技巧

    一 准备工作 1  文件下载及启动盘制作 文件可以在https://mirrors.ustc.edu.cn/,这是个中科大的镜像网,选择如下: 下载完成后,就是制作一个启动盘,我使用的是Linux下强 ...

  5. 《Language Implementation Patterns》之 强类型规则

    语句的语义取决于其语法结构和相关符号:前者说明了了要"做什么",后者说明了操作"什么对象".所以即使语法结构正确的,如果被操作的对象不合法,语句也是不合法的.语 ...

  6. iOS开发-即时通信XMPP

    1. 即时通信 1> 概述 即时通讯(Instant Messaging)是目前Internet上最为流行的通讯方式,各种各样的即时通讯软件也层出不穷,服务提供商也提供了越来越丰富的通讯服务功能 ...

  7. Java如何调取创蓝253短信验证码

    基于创蓝253短信服务平台的Java调用短信接口API package com.bcloud.msg.http; import java.io.ByteArrayOutputStream; impor ...

  8. 剑指offer-数据流中的中位数

    题目描述 如何得到一个数据流中的中位数?如果从数据流中读出奇数个数值,那么中位数就是所有数值排序之后位于中间的数值.如果从数据流中读出偶数个数值,那么中位数就是所有数值排序之后中间两个数的平均值.   ...

  9. Struts2 之值栈

    值栈(ValueStack) http://www.cnblogs.com/bgzyy/p/8639893.html 这是我的有关 struts2 的第一篇文章,对于里面我们说到的一个 struts2 ...

  10. spring-oauth-server实践:使用授权方式四:client_credentials 模式下access_token做业务!!!

    spring-oauth-server入门(1-10)使用授权方式四:client_credentials 模式下access_token做业务!!! 准备工作 授权方式四::客户端方式: 服务网关地 ...