【BZOJ5250】[九省联考2018]秘密袭击(动态规划)

题面

BZOJ

洛谷

给定一棵树,求其所有联通块的权值第\(k\)大的和。

题解

整个\(O(nk(n-k))\)的暴力剪剪枝就给过了。。。

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
#define MAX 1700
#define MOD 64123
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
struct Line{int v,next;}e[MAX<<1];
int h[MAX],cnt=1;
inline void Add(int u,int v){e[cnt]=(Line){v,h[u]};h[u]=cnt++;}
int n,K,W,ans,a[MAX],b[MAX];
int f[MAX][MAX],sz[MAX],tmp[MAX];
void dfs(int u,int ff)
{
f[u][b[u]]=1;sz[u]=b[u];
for(int i=h[u];i;i=e[i].next)
{
int v=e[i].v;if(v==ff)continue;
dfs(v,u);
for(int j=0;j<=sz[u]&&j<=K;++j)
for(int k=0;k<=sz[v]&&k<=K;++k)
tmp[j+k]=(tmp[j+k]+1ll*f[u][j]*f[v][k]%MOD);
sz[u]+=sz[v];
for(int j=0;j<=sz[u];++j)f[u][j]=(f[u][j]+tmp[j])%MOD,tmp[j]=0;
}
}
int main()
{
n=read();K=read();W=read();
for(int i=1;i<=n;++i)a[i]=read();
for(int i=1;i<n;++i)
{
int u=read(),v=read();
Add(u,v);Add(v,u);
}
for(int i=1;i<=n;++i)
{
int sum=0;
for(int j=1;j<=n;++j)
if(a[j]>a[i]||(a[j]==a[i]&&j>=i))b[j]=1,++sum;
else b[j]=0;
if(sum<K)continue;
memset(f,0,sizeof(f));
dfs(i,0);
ans=(ans+1ll*a[i]*f[i][K])%MOD;
}
printf("%d\n",ans);
return 0;
}

【BZOJ5250】[九省联考2018]秘密袭击(动态规划)的更多相关文章

  1. [BZOJ5250][九省联考2018]秘密袭击(DP)

    5250: [2018多省省队联测]秘密袭击 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 3  Solved: 0[Submit][Status][D ...

  2. [九省联考2018]秘密袭击coat

    [九省联考2018]秘密袭击coat 研究半天题解啊... 全网几乎唯一的官方做法的题解:链接 别的都是暴力.... 要是n=3333暴力就完了. 一.问题转化 每个联通块第k大的数,直观统计的话,会 ...

  3. P4365 [九省联考2018]秘密袭击coat

    $ \color{#0066ff}{ 题目描述 }$ Access Globe 最近正在玩一款战略游戏.在游戏中,他操控的角色是一名C 国士 兵.他的任务就是服从指挥官的指令参加战斗,并在战斗中取胜. ...

  4. 并不对劲的复健训练-bzoj5250:loj2473:p4365:[九省联考2018]秘密袭击

    题目大意 有一棵\(n\)(\(n\leq 1666\))个点的树,有点权\(d_i\),点权最大值为\(w\)(\(w\leq 1666\)).给出\(k\)(\(k\leq n\)),定义一个选择 ...

  5. 解题:九省联考2018 秘密袭击CoaT

    题面 按照*Miracle*的话来说,网上又多了一篇n^3暴力的题解 可能是因为很多猫题虽然很好,但是写正解性价比比较低? 直接做不可做,转化为统计贡献:$O(n)$枚举每个权值,直接统计第k大大于等 ...

  6. [九省联考 2018]秘密袭击coat

    Description 题库链接 给出一棵 \(n\) 个点的树,每个点有点权.求所有联通块的权值 \(k\) 大和,对 \(64123\) 取模. \(1\leq n,k\leq 1666\) So ...

  7. [LOJ #2473] [九省联考2018] 秘密袭击coat

    题目链接 洛谷. LOJ,LOJ机子是真的快 Solution 我直接上暴力了...\(O(n^2k)\)洛谷要\(O2\)才能过...loj平均单点一秒... 直接枚举每个点为第\(k\)大的点,然 ...

  8. LuoguP4365 [九省联考2018]秘密袭击

    https://zybuluo.com/ysner/note/1141136 题面 求一颗大小为\(n\)的树取联通块的所有方案中,第\(k\)个数之和. \(n\leq1,667,k\leq n\) ...

  9. luogu P4365 [九省联考2018]秘密袭击coat

    luogu 这里不妨考虑每个点的贡献,即求出每个点在多少个联通块中为第\(k\)大的(这里权值相同的可以按任意顺序排大小),然后答案为所有点权值\(*\)上面求的东西之和 把比这个点大的点看成\(1\ ...

随机推荐

  1. ibeacon和蓝牙有什么区别_它们的区别在哪里

    iBeacon概述 iBeacon是苹果公司2013年9月发布的移动设备用OS(iOS7)上配备的新功能.其工作方式是,配备有低功耗蓝牙(BLE)通信功能的设备使用BLE技术向周围发送自己特有的ID, ...

  2. 环同态p64推论

    1.为什么属于f(x)∈f(I),那么 2.为什么x属于ker,那么f(x)属于f(I)?

  3. MySQL 高可用性—keepalived+mysql双主

    MySQL 高可用性—keepalived+mysql双主(有详细步骤和全部配置项解释) - 我的博客 - CSDN博客https://blog.csdn.net/qq_36276335/articl ...

  4. Spring boot + mybatis + orcale实战(干货)

    废话少说,直接上步骤: 第一步:安装好IDEA(此处省略) 第二步:在IDEA新建springboot工程 第三步:在springboot工程的pom.xml添加oracle和mybait依赖 < ...

  5. flutter-StatelessWidget与StatefulWidget

    StatelessWidget和StatefulWidget是flutter的基础组件,日常开发中自定义Widget都是选择继承这两者之一. 两者的区别在于状态的改变,StatelessWidget面 ...

  6. python爬虫之pandas

    一.简介: Python Data Analysis Library 或 pandas 是基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建的.Pandas 纳入了大量库和一些标准的数据模 ...

  7. $mount(“#app”)手动挂载

    没有el属性时,证明vue还没绑定到特定的dom上,需要延迟加载,则使用.$mount("")进行手动挂载 https://blog.csdn.net/longzhoufeng/a ...

  8. Jackson将对象转换为json字符串时,设置默认的时间格式

    maven需要的依赖: <dependency> <groupId>com.fasterxml.jackson.core</groupId> <artifac ...

  9. Lodop打印控件 打印‘接下一页’‘以下空白’

    Lodop打印控件中,超文本超过设置的打印项高度 或超过纸张,就会自动分页,纯文本通过设置为多页项也可以根据打印项高度自动分页,Lodop中还提供了许多手动分页的方法,对于多页文档中(自动分页或手动分 ...

  10. codeforces605A

    Sorting Railway Cars CodeForces - 605A 一辆列车有N节车厢,编号为1...N(每节车厢编号都不同),并且他们的排列是混乱的.李老湿想要把这N节车厢重新排列为升序排 ...