题目描述

  一个二维平面上有\(n\)个梯形,满足:

   所有梯形的下底边在直线\(y=0\)上。

   所有梯形的上底边在直线\(y=1\)上。

   没有两个点的坐标相同。

  你一次可以选择任意多个梯形,必须满足这些梯形两两重叠,然后删掉这些梯形。

  问你最少几次可以删掉所有梯形。

  \(n\leq {10}^5\)

题解

  先把坐标离散化。

  定义\(A\)为所有梯形组成的集合。

  我们定义\(A\)上的严格偏序:两个梯形\(a<b\)当且仅当\(a\)与\(b\)不重叠且\(a\)在\(b\)的左边。

  那么每次删掉的矩形就是一条反链。

  所以这道题求的是最小反链覆盖。

  根据Dilworth定理的对偶定理,有:最小反链覆盖数\(=\)最长链长度

  所以我们只用求最长链长度就好了。

  这个东西可以DP做。

\[f_i=\max_{a12j<a11i,a22j<a21i}f_j+1
\]

  \(a11,a12,a21,a22\)分别代表一个梯形的上底边的两个端点的横坐标,下底边的两个端点的横坐标

  可以把所有梯形按\(a11\)排序,维护一个以\(a12\)为关键字的堆,把队中的元素取出以\(a22\)位置,\(f_j\)为值插入到树状数组中,然后在树状数组中查询答案。

  时间复杂度:\(O(n\log n)\)

代码

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
#include<utility>
using namespace std;
typedef pair<int,int> pii;
priority_queue<pii,vector<pii>,greater<pii> > q;
struct p
{
int a11,a12,a21,a22;
};
p a[100010];
int cmp(p a,p b)
{
return a.a11<b.a11;
}
int f[100010];
int c[100010];
int m=0;
int d[200010];
void add(int x,int v)
{
for(;x<=m;x+=x&-x)
c[x]=max(c[x],v);
}
int query(int x)
{
int s=0;
for(;x;x-=x&-x)
s=max(s,c[x]);
return s;
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("b.in","r",stdin);
freopen("b.out","w",stdout);
#endif
int n,i;
scanf("%d",&n);
for(i=1;i<=n;i++)
{
scanf("%d%d%d%d",&a[i].a11,&a[i].a12,&a[i].a21,&a[i].a22);
d[++m]=a[i].a21;
d[++m]=a[i].a22;
}
sort(d+1,d+m+1);
for(i=1;i<=n;i++)
{
a[i].a21=lower_bound(d+1,d+m+1,a[i].a21)-d;
a[i].a22=lower_bound(d+1,d+m+1,a[i].a22)-d;
}
sort(a+1,a+n+1,cmp);
int ans=0;
for(i=1;i<=n;i++)
{
q.push(pii(a[i].a12,i));
while(!q.empty()&&q.top().first<a[i].a11)
{
pii x=q.top();
q.pop();
add(a[x.second].a22,f[x.second]);
}
f[i]=query(a[i].a21)+1;
ans=max(ans,f[i]);
}
printf("%d\n",ans);
return 0;
}

【XSY2727】Remove Dilworth定理 堆 树状数组 DP的更多相关文章

  1. codeforces 597C (树状数组+DP)

    题目链接:http://codeforces.com/contest/597/problem/C 思路:dp[i][j]表示长度为i,以j结尾的上升子序列,则有dp[i][j]= ∑dp[i-1][k ...

  2. hdu 4622 Reincarnation trie树+树状数组/dp

    题意:给你一个字符串和m个询问,问你l,r这个区间内出现过多少字串. 连接:http://acm.hdu.edu.cn/showproblem.php?pid=4622 网上也有用后缀数组搞得. 思路 ...

  3. Codeforces 597C. Subsequences (树状数组+dp)

    题目链接:http://codeforces.com/contest/597/problem/C 给你n和数(1~n各不同),问你长为k+1的上升自序列有多少. dp[i][j] 表示末尾数字为i 长 ...

  4. HDU2227Find the nondecreasing subsequences(树状数组+DP)

    题目大意就是说帮你给出一个序列a,让你求出它的非递减序列有多少个. 设dp[i]表示以a[i]结尾的非递减子序列的个数,由题意我们可以写出状态转移方程: dp[i] = sum{dp[j] | 1&l ...

  5. 【USACO】奶牛抗议 树状数组+dp

    题目描述 约翰家的 N 头奶牛正在排队游行抗议.一些奶牛情绪激动,约翰测算下来,排在第 i 位的奶牛 的理智度为 A i ,数字可正可负. 约翰希望奶牛在抗议时保持理性,为此,他打算将这条队伍分割成几 ...

  6. CodeForces - 314C Sereja and Subsequences (树状数组+dp)

    Sereja has a sequence that consists of n positive integers, a1, a2, ..., an. First Sereja took a pie ...

  7. HDU 6348 序列计数 (树状数组 + DP)

    序列计数 Time Limit: 4500/4000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)Total Subm ...

  8. [Codeforces261D]Maxim and Increasing Subsequence——树状数组+DP

    题目链接: Codeforces261D 题目大意:$k$次询问,每次给出一个长度为$n$的序列$b$及$b$中的最大值$maxb$,构造出序列$a$为$t$个序列$b$连接而成,求$a$的最长上升子 ...

  9. hdu5489 树状数组+dp

    2015-10-06 21:49:54 这题说的是个给了一个数组,然后删除任意起点的一个连续的L个数,然后求最长递增子序列<是递增,不是非递减>,用一个树状数组维护一下就ok了 #incl ...

随机推荐

  1. Mac 下编译安装 php-5.6

    1.安装 PHP 1.1 下载源码包 http://php.net/get/php-5.6.35.tar.bz2/from/a/mirror 1.2 编译&安装 ./configure --p ...

  2. mysqldump 和mysqlbinlog

    一.mysqldump 1.备份test库 #mysqldump -uroot -p' test >test.sql 2.备份 -B参数 ' -B test >test_B.sql --B ...

  3. Johnson算法

    用于求稀疏图上的全局最短路. 考虑将带负权的图变为不带负权的图,再跑\(n\)次Dijkstra. 方法:新建点S,向所有点连边权为\(0\)的边,然后以S为起点跑SPFA.然后将每条边的权值重新赋为 ...

  4. 微信小程序学习笔记以及VUE比较

    之前只是注册了一下微信小程序AppID,随便玩了玩HelloWorld!(项目起手式),但是最近看微信小程序/小游戏,崛起之势不可阻挡.小程序我来了!(果然,一入前端深似海啊啊啊啊啊~) 编辑器: S ...

  5. C. Polycarp Restores Permutation

    链接 [https://codeforces.com/contest/1141/problem/C] 题意 qi=pi+1−pi.给你qi让你恢复pi 每个pi都不一样 分析 就是数学吧 a1 +(a ...

  6. 网工的Linux系统学习历程

    偶遇篇作为一名通过思科CCNP认证的网络工程师,专注于网络技术.但在日常的工作中,难免不接触到服务器,对于大多数服务器来说,鉴于稳定性等因素的考虑,基本使用的都是Linux系统,包括RHEL.Cent ...

  7. 逻辑回归为什么用sigmoid函数

    Logistic回归目的是从特征学习出一个0/1分类模型,而这个模型是将特性的线性组合作为自变量,由于自变量的取值范围是负无穷到正无穷. 因此,使用logistic函数(或称作sigmoid函数)将自 ...

  8. java问题

    Collection 和 Collections的区别? Collection是集合类的上级接口,继承与他的接口主要有Set 和List. Collections是针对集合类的一个帮助类,他提供一系列 ...

  9. fileInput插件上传文件

    一.ftl <form action="" method="post" name="form" id="form" ...

  10. 消除element.style { }

    1.在写前台页面时,我们会发现控制台里会自动出现一些样式覆盖掉我们定义的样式: 解决的办法: 把被覆盖的样式单独定义出来,并在样式后面加上 !important,表示高优先级.