题目描述

  一个二维平面上有\(n\)个梯形,满足:

   所有梯形的下底边在直线\(y=0\)上。

   所有梯形的上底边在直线\(y=1\)上。

   没有两个点的坐标相同。

  你一次可以选择任意多个梯形,必须满足这些梯形两两重叠,然后删掉这些梯形。

  问你最少几次可以删掉所有梯形。

  \(n\leq {10}^5\)

题解

  先把坐标离散化。

  定义\(A\)为所有梯形组成的集合。

  我们定义\(A\)上的严格偏序:两个梯形\(a<b\)当且仅当\(a\)与\(b\)不重叠且\(a\)在\(b\)的左边。

  那么每次删掉的矩形就是一条反链。

  所以这道题求的是最小反链覆盖。

  根据Dilworth定理的对偶定理,有:最小反链覆盖数\(=\)最长链长度

  所以我们只用求最长链长度就好了。

  这个东西可以DP做。

\[f_i=\max_{a12j<a11i,a22j<a21i}f_j+1
\]

  \(a11,a12,a21,a22\)分别代表一个梯形的上底边的两个端点的横坐标,下底边的两个端点的横坐标

  可以把所有梯形按\(a11\)排序,维护一个以\(a12\)为关键字的堆,把队中的元素取出以\(a22\)位置,\(f_j\)为值插入到树状数组中,然后在树状数组中查询答案。

  时间复杂度:\(O(n\log n)\)

代码

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
#include<utility>
using namespace std;
typedef pair<int,int> pii;
priority_queue<pii,vector<pii>,greater<pii> > q;
struct p
{
int a11,a12,a21,a22;
};
p a[100010];
int cmp(p a,p b)
{
return a.a11<b.a11;
}
int f[100010];
int c[100010];
int m=0;
int d[200010];
void add(int x,int v)
{
for(;x<=m;x+=x&-x)
c[x]=max(c[x],v);
}
int query(int x)
{
int s=0;
for(;x;x-=x&-x)
s=max(s,c[x]);
return s;
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("b.in","r",stdin);
freopen("b.out","w",stdout);
#endif
int n,i;
scanf("%d",&n);
for(i=1;i<=n;i++)
{
scanf("%d%d%d%d",&a[i].a11,&a[i].a12,&a[i].a21,&a[i].a22);
d[++m]=a[i].a21;
d[++m]=a[i].a22;
}
sort(d+1,d+m+1);
for(i=1;i<=n;i++)
{
a[i].a21=lower_bound(d+1,d+m+1,a[i].a21)-d;
a[i].a22=lower_bound(d+1,d+m+1,a[i].a22)-d;
}
sort(a+1,a+n+1,cmp);
int ans=0;
for(i=1;i<=n;i++)
{
q.push(pii(a[i].a12,i));
while(!q.empty()&&q.top().first<a[i].a11)
{
pii x=q.top();
q.pop();
add(a[x.second].a22,f[x.second]);
}
f[i]=query(a[i].a21)+1;
ans=max(ans,f[i]);
}
printf("%d\n",ans);
return 0;
}

【XSY2727】Remove Dilworth定理 堆 树状数组 DP的更多相关文章

  1. codeforces 597C (树状数组+DP)

    题目链接:http://codeforces.com/contest/597/problem/C 思路:dp[i][j]表示长度为i,以j结尾的上升子序列,则有dp[i][j]= ∑dp[i-1][k ...

  2. hdu 4622 Reincarnation trie树+树状数组/dp

    题意:给你一个字符串和m个询问,问你l,r这个区间内出现过多少字串. 连接:http://acm.hdu.edu.cn/showproblem.php?pid=4622 网上也有用后缀数组搞得. 思路 ...

  3. Codeforces 597C. Subsequences (树状数组+dp)

    题目链接:http://codeforces.com/contest/597/problem/C 给你n和数(1~n各不同),问你长为k+1的上升自序列有多少. dp[i][j] 表示末尾数字为i 长 ...

  4. HDU2227Find the nondecreasing subsequences(树状数组+DP)

    题目大意就是说帮你给出一个序列a,让你求出它的非递减序列有多少个. 设dp[i]表示以a[i]结尾的非递减子序列的个数,由题意我们可以写出状态转移方程: dp[i] = sum{dp[j] | 1&l ...

  5. 【USACO】奶牛抗议 树状数组+dp

    题目描述 约翰家的 N 头奶牛正在排队游行抗议.一些奶牛情绪激动,约翰测算下来,排在第 i 位的奶牛 的理智度为 A i ,数字可正可负. 约翰希望奶牛在抗议时保持理性,为此,他打算将这条队伍分割成几 ...

  6. CodeForces - 314C Sereja and Subsequences (树状数组+dp)

    Sereja has a sequence that consists of n positive integers, a1, a2, ..., an. First Sereja took a pie ...

  7. HDU 6348 序列计数 (树状数组 + DP)

    序列计数 Time Limit: 4500/4000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)Total Subm ...

  8. [Codeforces261D]Maxim and Increasing Subsequence——树状数组+DP

    题目链接: Codeforces261D 题目大意:$k$次询问,每次给出一个长度为$n$的序列$b$及$b$中的最大值$maxb$,构造出序列$a$为$t$个序列$b$连接而成,求$a$的最长上升子 ...

  9. hdu5489 树状数组+dp

    2015-10-06 21:49:54 这题说的是个给了一个数组,然后删除任意起点的一个连续的L个数,然后求最长递增子序列<是递增,不是非递减>,用一个树状数组维护一下就ok了 #incl ...

随机推荐

  1. 安装SQL Server时,提示VS Shell 安装失败,退出代码为 1638。

    在安装SQL Server时,提示“安装 Microsoft Visual C++ 2015 Redistributable 时出错VS Shell 安装失败,退出代码为 1638”. 原因:是由于你 ...

  2. Bad Hair Day POJ - 3250 (单调栈入门题)

    Some of Farmer John's N cows (1 ≤ N ≤ 80,000) are having a bad hair day! Since each cow is self-cons ...

  3. C++实现算法常用的STL---整理

    algorithm min(a,b)和max(a,b) #include<iostream> #include<algorithm> using namespace std; ...

  4. C#中闭包的陷阱

    我们在使用lambda的时候会遇到闭包,在闭包中有一个陷阱是在for循环中产生的,先上代码: class Program { static void Main(string[] args) { Act ...

  5. Oracle通过ROWID删除表中重复记录

    -- 1 通过ROWID删除T1表里重复的记录    SELECT ROWID,A,B--DELETE FROM  T1WHERE ROWID IN (  SELECT RD  FROM  (     ...

  6. [转帖]TLS 1.3 VS TLS 1.2,让你明白 TLS 1.3 的强大

    TLS 1.3 VS TLS 1.2,让你明白 TLS 1.3 的强大 https://www.jianshu.com/p/efe44d4a7501?utm_source=oschina-app 又拍 ...

  7. 前端开发之css

    <!--页面中的组成部分通常随便打开一个网页,有文字,图片,视频,表格,音频,表单(注册信息) css 属性/尺寸/边框/背景 1.css的尺寸属性,就是大小width max-width mi ...

  8. python爬虫之git的使用(origin说明)

    1.首先我们回忆两个命令 #git remote add origin 远程仓库链接 #git push -u origin master 我们一起看看这个命令,git是git的一级命令,push就是 ...

  9. 【转】 Golang输入输出格式化Printf Springf Fprintf..

    // Go 在传统的`printf` 中对字符串格式化提供了优异的支持. // 这里是一些基本的字符串格式化的人物的例子. package main import "fmt" im ...

  10. Session和Cookie介绍及常见httpcode

    Cookie和Session,及常见httpcode 1.cookie和session简介: cookie是放在客户端的键值对,用来识别用户信息的,主要包括:名字,值,过期时间,路径和域.路径与域一起 ...