Description

The cows, as you know, have no fingers or thumbs and thus are unable to play Scissors, Paper, Stone' (also known as 'Rock, Paper, Scissors', 'Ro, Sham, Bo', and a host of other names) in order to make arbitrary decisions such as who gets to be milked first. They can't even flip a coin because it's so hard to toss using hooves.

They have thus resorted to "round number" matching. The first cow picks an integer less than two billion. The second cow does the same. If the numbers are both "round numbers", the first cow wins,
otherwise the second cow wins.

A positive integer N is said to be a "round number" if the binary representation of N has as many or more zeroes than it has ones. For example, the integer 9, when written in binary form, is 1001. 1001 has two zeroes and two ones; thus, 9 is a round number. The integer 26 is 11010 in binary; since it has two zeroes and three ones, it is not a round number.

Obviously, it takes cows a while to convert numbers to binary, so the winner takes a while to determine. Bessie wants to cheat and thinks she can do that if she knows how many "round numbers" are in a given range.

Help her by writing a program that tells how many round numbers appear in the inclusive range given by the input (1 ≤ Start < Finish ≤ 2,000,000,000).

Input

Line 1: Two space-separated integers, respectively Start and Finish.

Output

Line 1: A single integer that is the count of round numbers in the inclusive range Start..Finish

Sample Input

2 12

Sample Output

6

题意:求s到e中二进制数 0的个数大于1的个数 的数的个数(语文不好见谅..)

思路:dp[i][j][k] i为数位 j为0的个数 k为1的个数 主要就是需要处理前导零 因为数位dp不可避免的要遍历前面全是零的情况 所以需要在递归的时候再加一个参数出现一以后再计算

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<string>
#include<vector>
#include<stack>
#include<bitset>
#include<cstdlib>
#include<cmath>
#include<set>
#include<list>
#include<deque>
#include<map>
#include<queue>
#define ll long long int
using namespace std;
inline ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
inline ll lcm(ll a,ll b){return a/gcd(a,b)*b;}
int moth[]={,,,,,,,,,,,,};
int dir[][]={, ,, ,-, ,,-};
int dirs[][]={, ,, ,-, ,,-, -,- ,-, ,,- ,,};
const int inf=0x3f3f3f3f;
const ll mod=1e9+;
int bits[];
ll dp[][][];
ll dfs(int len,int numzero,bool ismax,int numone,bool haveone){
if(!len) return numzero>=numone;
if(!ismax&&dp[len][numzero][numone]>=) return dp[len][numzero][numone];
int up=ismax?bits[len]:;
ll ans=; int i;
for(i=;i<=up;i++){
if(i==&&haveone)
ans+=dfs(len-,numzero+,ismax&&i==up,numone,true);
else if(i==)
ans+=dfs(len-,numzero,ismax&&i==up,numone+,true);
else if(i==&&!haveone)
ans+=dfs(len-,numzero,ismax&&i==up,numone,false);
}
if(!ismax) dp[len][numzero][numone]=ans;
return ans;
}
ll solve(ll n){
int len=;
while(n){
bits[++len]=n%;
n/=;
}
return dfs(len,,true,,false);
}
int main(){
ios::sync_with_stdio(false);
ll s,e;
while(cin>>s>>e){
memset(dp,-,sizeof(dp));
cout<<solve(e)-solve(s-)<<endl;
}
return ;
}

poj 3252 Round Numbers(数位dp 处理前导零)的更多相关文章

  1. POJ 3252 Round Numbers(数位dp&amp;记忆化搜索)

    题目链接:[kuangbin带你飞]专题十五 数位DP E - Round Numbers 题意 给定区间.求转化为二进制后当中0比1多或相等的数字的个数. 思路 将数字转化为二进制进行数位dp,由于 ...

  2. POJ - 3252 - Round Numbers(数位DP)

    链接: https://vjudge.net/problem/POJ-3252 题意: The cows, as you know, have no fingers or thumbs and thu ...

  3. poj 3252 Round Numbers 数位dp

    题目链接 找一个范围内二进制中0的个数大于等于1的个数的数的数量.基础的数位dp #include<bits/stdc++.h> using namespace std; #define ...

  4. $POJ$3252 $Round\ Numbers$ 数位$dp$

    正解:数位$dp$ 解题报告: 传送门$w$ 沉迷写博客,,,不想做题,,,$QAQ$口胡一时爽一直口胡一直爽$QAQ$ 先港下题目大意嗷$QwQ$大概就说,给定区间$[l,r]$,求区间内满足二进制 ...

  5. POJ3252 Round Numbers —— 数位DP

    题目链接:http://poj.org/problem?id=3252 Round Numbers Time Limit: 2000MS   Memory Limit: 65536K Total Su ...

  6. Round Numbers(数位DP)

    Round Numbers http://poj.org/problem?id=3252 Time Limit: 2000MS   Memory Limit: 65536K Total Submiss ...

  7. 4-圆数Round Numbers(数位dp)

    Round Numbers Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 14947   Accepted: 6023 De ...

  8. poj3252 Round Numbers (数位dp)

    Description The cows, as you know, have no fingers or thumbs and thus are unable to play Scissors, P ...

  9. POJ 3252 Round Numbers(组合)

    题目链接:http://poj.org/problem?id=3252 题意: 一个数的二进制表示中0的个数大于等于1的个数则称作Round Numbers.求区间[L,R]内的 Round Numb ...

随机推荐

  1. Laravel Providers——服务提供者的注册与启动源码解析

      本文 GitBook 地址: https://www.gitbook.com/book/leoyang90/laravel-source-analysishttps://learnku.com/a ...

  2. flutter开发vscode用模拟器调试

    android studio的太重,我装的是android sdk,使用avd的模拟器启动黑屏 启动夜神模拟器(已卸载) 建立连接: adb connect 127.0.0.1:62001    (夜 ...

  3. Could not render e, see the console.

    错误截图: 解决: 在application.properties中开启swagger swagger2.enable=true

  4. Redis的java客户端jedis

    导包:Jedis需要的jar包 >Commons-pool-1.6.jar >Jedis-2.1.0.jar 配置:linux防火墙设置,不会设置就关闭. 停止防火墙 systemctl ...

  5. linux audit审计(7)--读懂audit日志

    让我们先来构造一条audit日志.在home目录下新建一个目录,然后配置一条audit规则,对这个目录的wrax,都记录审计日志: auditctl -w /home/audit_test -p wr ...

  6. linux audit审计(5)--audit规则配置

    audit可以配置规则,这个规则主要是给内核模块下发的,内核audit模块会按照这个规则获取审计信息,发送给auditd来记录日志. 规则类型可分为: 1.控制规则:控制audit系统的规则: 2.文 ...

  7. Java并发编程之ThreadGroup

    ThreadGroup是Java提供的一种对线程进行分组管理的手段,可以对所有线程以组为单位进行操作,如设置优先级.守护线程等. 线程组也有父子的概念,如下图: 线程组的创建 public class ...

  8. Java多线程0:核心理论

    并发编程是Java程序员最重要的技能之一,也是最难掌握的一种技能.它要求编程者对计算机最底层的运作原理有深刻的理解,同时要求编程者逻辑清晰.思维缜密,这样才能写出高效.安全.可靠的多线程并发程序.本系 ...

  9. Monkey脚本API简介

    一.API简介 LaunchActivity(pkg_name, cl_name):启动应用的Activity.参数:包名和启动的Activity. Tap(x, y, tapDuration): 模 ...

  10. Java多线程之单例模式(线程安全)

    package org.study2.javabase.ThreadsDemo.sync; /** * @Auther:GongXingRui * @Date:2018/9/20 * @Descrip ...