[SDOI2008]递归数列
嘟嘟嘟
裸的矩阵快速幂,构造一个\((k + 1) * (k + 1)\)的矩阵,把sum[n]也放到矩阵里面就行了。
#include<cstdio>
#include<iostream>
#include<cmath>
#include<algorithm>
#include<cstring>
#include<cstdlib>
#include<cctype>
#include<vector>
#include<stack>
#include<queue>
using namespace std;
#define enter puts("")
#define space putchar(' ')
#define Mem(a, x) memset(a, x, sizeof(a))
#define In inline
typedef long long ll;
typedef double db;
const int INF = 0x3f3f3f3f;
const db eps = 1e-8;
const int maxn = 18;
inline ll read()
{
ll ans = 0;
char ch = getchar(), last = ' ';
while(!isdigit(ch)) last = ch, ch = getchar();
while(isdigit(ch)) ans = (ans << 1) + (ans << 3) + ch - '0', ch = getchar();
if(last == '-') ans = -ans;
return ans;
}
inline void write(ll x)
{
if(x < 0) x = -x, putchar('-');
if(x >= 10) write(x / 10);
putchar(x % 10 + '0');
}
ll l, r, mod, sum[maxn];
int K, Max;
int b[maxn], c[maxn];
struct Mat
{
ll a[maxn][maxn];
In Mat operator * (const Mat& oth)const
{
static Mat ret; Mem(ret.a, 0);
for(int i = 0; i <= Max; ++i)
for(int j = 0; j <= Max; ++j)
for(int k = 0; k <= Max; ++k) ret.a[i][j] += a[i][k] * oth.a[k][j], ret.a[i][j] %= mod;
return ret;
}
}f;
In void init()
{
for(int i = 1; i <= K; ++i) sum[i] = (sum[i - 1] + b[i]) % mod;
Max = K; Mem(f.a, 0); f.a[0][0] = 1;
for(int i = 1; i <= Max; ++i) f.a[0][i] = f.a[1][i] = c[i];
for(int i = 2; i <= K; ++i) f.a[i][i - 1] = 1;
}
In Mat quickpow(Mat A, ll b)
{
Mat ret; Mem(ret.a, 0);
for(int i = 0; i <= Max; ++i) ret.a[i][i] = 1;
for(; b; b >>= 1, A = A * A)
if(b & 1) ret = ret * A;
return ret;
}
In ll solve(ll n)
{
if(n <= K) return sum[n];
n -= K;
Mat A = quickpow(f, n);
ll ret = sum[K];
for(int i = 1; i <= K; ++i) ret = (ret + A.a[0][i] * b[K - i + 1] % mod) % mod;
return ret;
}
int main()
{
K = read();
for(int i = 1; i <= K; ++i) b[i] = read();
for(int i = 1; i <= K; ++i) c[i] = read();
l = read(), r = read(), mod = read();
init();
write((solve(r) - solve(l - 1) + mod) % mod), enter;
return 0;
}
[SDOI2008]递归数列的更多相关文章
- BZOJ 3231: [Sdoi2008]递归数列( 矩阵快速幂 )
矩阵乘法裸题..差分一下然后用矩阵乘法+快速幂就可以了. ----------------------------------------------------------------------- ...
- BZOJ3231: [Sdoi2008]递归数列
BZOJ3231: [Sdoi2008]递归数列 Description 一个由自然数组成的数列按下式定义: 对于i <= k:ai = bi 对于i > k: ai = c1ai-1 + ...
- BZOJ_3231_[Sdoi2008]递归数列_矩阵乘法
BZOJ_3231_[Sdoi2008]递归数列_矩阵乘法 Description 一个由自然数组成的数列按下式定义: 对于i <= k:ai = bi 对于i > k: ai = c1a ...
- 开始玩矩阵了!先来一道入门题![SDOI2008]递归数列
[SDOI2008]递归数列 题目描述 一个由自然数组成的数列按下式定义: 对于i <= k:ai = bi 对于i > k: ai = c1ai-1 + c2ai-2 + ... + c ...
- P2461 [SDOI2008]递归数列
题目描述 一个由自然数组成的数列按下式定义: 对于i <= k:ai = bi 对于i > k: ai = c1ai-1 + c2ai-2 + ... + ckai-k 其中bj 和 cj ...
- [bzoj3231][SDOI2008]递归数列——矩阵乘法
题目大意: 一个由自然数组成的数列按下式定义: 对于i <= k:ai = bi 对于i > k: ai = c1ai-1 + c2ai-2 + ... + ckai-k 其中bj和 cj ...
- 【bzoj3231】[Sdoi2008]递归数列 矩阵乘法+快速幂
题目描述 一个由自然数组成的数列按下式定义: 对于i <= k:ai = bi 对于i > k: ai = c1ai-1 + c2ai-2 + ... + ckai-k 其中bj和 cj ...
- [luogu2461 SDOI2008] 递归数列 (矩阵乘法)
传送门 Description 一个由自然数组成的数列按下式定义: 对于i <= k:ai = bi 对于i > k: ai = c1ai-1 + c2ai-2 + ... + ckai- ...
- BZOJ 3231: [Sdoi2008]递归数列 (JZYZOJ 1353) 矩阵快速幂
http://www.lydsy.com/JudgeOnline/problem.php?id=3231 和斐波那契一个道理在最后加一个求和即可 #include<cstdio> #i ...
随机推荐
- 自定义mvc或mtv框架:基于wsgiref的web框架
把mvc或mtv框架的model数据库,view:html,control逻辑处理,url判别,wsgiref集中在一个文件 代码如下 #!/usr/bin/env python #-*- codin ...
- 前端常用技术概述--Less、typescript与webpack
前言:讲起前端,我们就不能不讲CSS与Javascript,在这两种技术广泛应用的今天,他们的扩展也是层出不穷,css的扩展有Less.Sass.Stylus 等,js的超集有Typescript等. ...
- 一个简单的scrollTop动画的方法
var autoScrollTop = function (param) { var delay = param.scrollDom.height() * 20; param.dom.animate( ...
- Jedis 简单案例
POM 依赖 <!-- https://mvnrepository.com/artifact/redis.clients/jedis --> <dependency> < ...
- Java map 详解
Map 提供了一个更通用的元素存储方法.Map 集合类用于存储元素对(称作“键”和“值”),其中每个键映射到一个值. 初始化一个集合: Map<String, String> map = ...
- Docker EE 安装 on centos7
本文演示如何在CentOS7上安装Docker EE. 1 安装方式 有两种方法可以 在Centos上安装和升级Docker企业版(Docker EE): YUM存储库:设置Docker存储库并从中安 ...
- JMS Session session = connection.createSession(paramA,paramB) 两个参数不同组合下的含义和区别
Session session = connection.createSession(paramA,paramB); paramA是设置事务,paramB是设置acknowledgment mode ...
- Sql Server 按格式输出日期
SELECT dbo.fn_Data(getdate(),'yyyymmdd') CREATE FUNCTION [dbo].[fn_Data] (@date as datetime, @format ...
- c/c++线性循环队列
线性循环队列 队列是先进先出,和栈相反. 线性循环队列,牺牲一个空间,实现循环.比如空间大小为4,牺牲一个空间,所以最多放3个元素. 假设front指向0位置,tail指向3位置 1 2 3 空 出队 ...
- Linux学习历程——Centos 7 ps命令基础
一.ps命令介绍 ps命令是Process Status的缩写,用于查看系统进程状态,ps命令输出值非常多,通常结合管道符使用. 二.实例 1.我们直接输入ps命令,不加任何参数. 可以看到默认输出4 ...