【C/C++】求解线性方程组的雅克比迭代与高斯赛德尔迭代
雅克比迭代:
/*
方程组求解的迭代法:
雅克比迭代
*/ #include<bits/stdc++.h>
using namespace std; double A[][];
double re[];
void swapA(int i,int j,int n){
//交换第i行与第j行
for(int x = ;x<=n;x++) {
double temp = A[i][x];
A[i][x] = A[j][x];
A[j][x] = temp;
}
} void getResult(int n,double e,int N){
//n个未知参数
for(int i = ;i<n;i++){
//初始化
re[i] = 0.0;
}
//先检验对角线元素是否为0,如果为0则交换某两列
//什么时候会交换失败?
for(int i = ;i<n;i++) {
if(fabs(A[i][i]-)<=1e-){
//如果第i行对角元素等于0
//找第i列不为0的一列与其交换
int j;
for(j = ;j<n;j++){
if(fabs(A[j][i]-)>1e-){
swapA(i,j,n);
break;
}
}
if(j>=n){
printf("系数矩阵不合法!\n");
}
i = ;//每次从头找
}
}
for(int i = ;i<n;i++) {
for(int j = ;j<n+;j++){
printf("%lf ",A[i][j]);
}
cout<<endl;
} //下面迭代
int k = ;
double x[];
//初始化x[i];
for(int i = ;i<n;i++){
x[i] = 0.0;
}
while(k<=N){
k++;
if(k>N) {
printf("迭代失败!\n");
exit();
}
for(int i = ;i<n;i++){
re[i] = A[i][n];
for(int j = ;j<n;j++){
if(j!=i){
re[i] = re[i] - A[i][j]*x[j];
}
}
re[i] = re[i] / A[i][i];
}
//当最大的x误差小于e则退出
double maxXerror = 0.0;
for(int i = ;i<n;i++){
if(fabs(x[i]-re[i]) >maxXerror){
maxXerror = fabs(x[i] - re[i]);
}
}
if(maxXerror < e){
return;
}
printf("第%d步迭代结果:",k);
for(int i = ;i<n;i++) {
printf("%lf ",re[i]);
}
cout<<endl;
//否则,继续
for(int i = ;i<n;i++){
x[i] = re[i];
}
}
} int main() {
printf("--------雅克比迭代--------\n\n");
int x,y;
cout<<"输入未知数个数与方程个数:";
cin>>x>>y;
if(x!=y) {
cout<<"超定或欠定!"<<endl;
return ;
}
//输入增广矩阵
printf("输入增广矩阵:\n");
for(int i = ;i<x;i++){
for(int j = ;j<x+;j++){
cin>>A[i][j];
}
}
//double re[10];
cout<<"输入精度e和最大迭代次数:" ;
double e;
int N;
cin>>e>>N;
getResult(x,e,N);
for(int i = ;i<x;i++){
cout<<re[i]<<" ";
}
}
/*
输入增广矩阵:
10 -1 -2 7.2
-1 10 -2 8.3
-1 -1 5 4.2
输入精度e和最大迭代次数:0.01 100
*/
/*
输入未知数个数与方程个数:4 4
输入增广矩阵:
10 0 1 -5 -7
1 8 -3 0 11
3 2 -8 1 23
1 -2 2 7 17
输入精度e和最大迭代次数:0.01 100
10.000000 0.000000 1.000000 -5.000000 -7.000000
1.000000 8.000000 -3.000000 0.000000 11.000000
3.000000 2.000000 -8.000000 1.000000 23.000000
1.000000 -2.000000 2.000000 7.000000 17.000000
0
1
2
3
4
5
6
7
8
0.998994 0.501136 -1.9985 2.99615
--------------------------------
*/
//当主对角有0
/*
输入未知数个数与方程个数:4 4
输入增广矩阵:
1 8 -3 0 11
10 0 1 -5 -7
3 2 -8 1 23
1 -2 2 7 17
输入精度e和最大迭代次数:0.01 100
10.000000 0.000000 1.000000 -5.000000 -7.000000
1.000000 8.000000 -3.000000 0.000000 11.000000
3.000000 2.000000 -8.000000 1.000000 23.000000
1.000000 -2.000000 2.000000 7.000000 17.000000
0
1
2
3
4
5
6
7
8
0.998994 0.501136 -1.9985 2.99615 */
G-S迭代:
/*
G-S迭代:
*/
#include<bits/stdc++.h>
using namespace std; double A[][];
double re[];
void swapA(int i,int j,int n){
//交换第i行与第j行
for(int x = ;x<=n;x++) {
double temp = A[i][x];
A[i][x] = A[j][x];
A[j][x] = temp;
}
} void getResult(int n,double e,int N){
//n个未知参数
for(int i = ;i<n;i++){
//初始化
re[i] = 0.0;
}
//先检验对角线元素是否为0,如果为0则交换某两列
//什么时候会交换失败?
for(int i = ;i<n;i++) {
if(fabs(A[i][i]-)<=1e-){
//如果第i行对角元素等于0
//找第i列不为0的一列与其交换
int j;
for(j = ;j<n;j++){
if(fabs(A[j][i]-)>1e-){
swapA(i,j,n);
break;
}
}
if(j>=n){
printf("系数矩阵不合法!\n");
}
i = ;//每次从头找
}
}
for(int i = ;i<n;i++) {
for(int j = ;j<n+;j++){
printf("%lf ",A[i][j]);
}
cout<<endl;
} //下面迭代
int k = ;
double x[];
//初始化x[i];
for(int i = ;i<n;i++){
x[i] = 0.0;
}
while(k<=N){
// printf("%d\n",k);
k++;
if(k>N) {
printf("迭代失败!\n");
exit();
}
for(int i = ;i<n;i++){
re[i] = A[i][n];
for(int j = ;j<i;j++){
re[i] = re[i] - A[i][j]*re[j];
}
for(int j = i+;j<n;j++){
re[i] = re[i] - A[i][j]*x[j];
}
re[i] = re[i] / A[i][i];
}
//当最大的x误差小于e则退出
double maxXerror = 0.0;
for(int i = ;i<n;i++){
if(fabs(x[i]-re[i]) >maxXerror){
maxXerror = fabs(x[i] - re[i]);
}
}
if(maxXerror < e){
return;
}
printf("第%d步迭代结果:",k);
for(int i = ;i<n;i++) {
printf("%lf ",re[i]);
}
cout<<endl;
//否则,继续
for(int i = ;i<n;i++){
x[i] = re[i];
}
}
} int main() {
printf("--------G-S迭代--------\n\n");
int x,y;
cout<<"输入未知数个数与方程个数:";
cin>>x>>y;
if(x!=y) {
cout<<"超定或欠定!"<<endl;
return ;
}
//输入增广矩阵
printf("输入增广矩阵:\n");
for(int i = ;i<x;i++){
for(int j = ;j<x+;j++){
cin>>A[i][j];
}
}
//double re[10];
cout<<"输入精度e和最大迭代次数:" ;
double e;
int N;
cin>>e>>N;
getResult(x,e,N);
printf("解是:\n");
for(int i = ;i<x;i++){
cout<<re[i]<<" ";
}
}
//相同的精度,G-S需要6次,而雅克比需要9次
/*
输入未知数个数与方程个数:4 4
输入增广矩阵:
10 0 1 -5 -7
1 8 -3 0 11
3 2 -8 1 23
1 -2 2 7 17
输入精度e和最大迭代次数:0.01 100
10.000000 0.000000 1.000000 -5.000000 -7.000000
1.000000 8.000000 -3.000000 0.000000 11.000000
3.000000 2.000000 -8.000000 1.000000 23.000000
1.000000 -2.000000 2.000000 7.000000 17.000000
0
1
2
3
4
5
6
0.999337 0.500458 -2.00027 3.0003
--------------------------------
*/
【C/C++】求解线性方程组的雅克比迭代与高斯赛德尔迭代的更多相关文章
- 雅克比迭代算法(Jacobi Iterative Methods) -- [ mpi , c++]
雅克比迭代,一般用来对线性方程组,进行求解.形如: \(a_{11}*x_{1} + a_{12}*x_{2} + a_{13}*x_{3} = b_{1}\) \(a_{21}*x_{1} + a_ ...
- 【原创】开源Math.NET基础数学类库使用(06)直接求解线性方程组
本博客所有文章分类的总目录:[总目录]本博客博文总目录-实时更新 开源Math.NET基础数学类库使用总目录:[目录]开源Math.NET基础数学类库使用总目录 前言 ...
- matlab 求解线性方程组之LU分解
线性代数中的一个核心思想就是矩阵分解,既将一个复杂的矩阵分解为更简单的矩阵的乘积.常见的有如下分解: LU分解:A=LU,A是m×n矩阵,L是m×m下三角矩阵,U是m×n阶梯形矩阵 QR分解: 秩分解 ...
- python 求解线性方程组
Python线性方程组求解 求解线性方程组比较简单,只需要用到一个函数(scipy.linalg.solve)就可以了.比如我们要求以下方程的解,这是一个非齐次线性方程组: 3x_1 + x_2 - ...
- Numpy库进阶教程(一)求解线性方程组
前言 Numpy是一个很强大的python科学计算库.为了机器学习的须要.想深入研究一下Numpy库的使用方法.用这个系列的博客.记录下我的学习过程. 系列: Numpy库进阶教程(二) 正在持续更新 ...
- matlab中求解线性方程组的rref函数
摘自:http://www.maybe520.net/blog/987/ matlab中怎么求解线性方程组呢? matlab中求解线性方程组可应用克拉默法则(Cramer's Rule)即通过det( ...
- [Matlab]求解线性方程组
转自:http://silencethinking.blog.163.com/blog/static/911490562008928105813169/ AX=B或XA=B在MATLAB中,求解线性方 ...
- Numpy计算逆矩阵求解线性方程组
对于这样的线性方程组: x + y + z = 6 2y + 5z = -4 2x + 5y - z = 27 可以表示成矩阵的形式: 用公式可以表示为:Ax=b,其中A是矩阵,x和b都是列向量 逆矩 ...
- Numpy求解线性方程组
Numpy求解线性方程组 对于Ax=b,已知A和b,怎么算出x? 1. 引入包 2. 求解 验证
随机推荐
- mongodb java3.2驱动 测试 一些记录
mongo驱动包 自带线程池的概念 获取 MongoClient mongoClient 后 通过客户端(mongoClient ) 获取 库操作 MongoDatabase 获取 表操作 Mongo ...
- [Spark][Python][DataFrame][RDD]从DataFrame得到RDD的例子
[Spark][Python][DataFrame][RDD]从DataFrame得到RDD的例子 $ hdfs dfs -cat people.json {"name":&quo ...
- C# Socket的粘包处理
当socket接收到数据后,会根据buffer的大小一点一点的接收数据,比如: 对方发来了1M的数据量过来,但是,本地的buffer只有1024字节,那就代表socket需要重复很多次才能真正收完这逻 ...
- Pointcut 笔记
教程 https://blog.csdn.net/kkdelta/article/details/7441829 http://www.cnblogs.com/youse/p/6564524.html ...
- 前端自动化 shell 脚本命令 与 shell-node 脚本命令 简单使用 之 es6 转译
(背景: 先用 babel 转译 es6 再 用 browserify 打包 模块化文件,来解决浏览器不支持模块化 )(Browserify是一个让node模块可以用在浏览器中的神奇工具) 今天折腾了 ...
- mybatis入门 配置文件解释 及测试
这里介绍一下mybatis 根据mybatis的官网说明,mybatis是一款优秀的持久层框架,它支持定制化 SQL.存储过程以及高级映射.MyBatis 避免了几乎所有的 JDBC 代码和手动设置 ...
- JS 深拷贝和浅拷贝概念,以及实现深拷贝的三种方式
一.理解堆栈,基本数据类型与引用数据类型 1.堆栈 栈(stack):系统自动分配的内存空间,内存会由系统自动释放,用来存放函数的参数值,局部变量的值等,特点是先进后出. 堆(heap):系统动态分配 ...
- HTTPS建立连接的过程
HTTP建立连接的过程点击:HTTP三次握手.一次HTTP请求都发生了什么 一.HTTPS HTTP是超文本传输协议.HTTP协议传输的数据都是未加密的,也就是明文的,因此使用HTTP协议传输隐私 ...
- Python_守护进程、锁、信号量、事件、队列
1.创建进程 守护进程(*****) _.daemon = True # _进程成为守护进程 守护进程也是一个子进程. 主进程的<代码>执行结束之后守护进程自动结束. import ti ...
- Python之自测代码标识__name__=='__main__'
__name__是python的默认的自测代码标识,其他文件导入该python文件时,不会执行这行代码以下部分. def yangfan(a): print('yangfan %s' %a) prin ...