[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.1
Let $x,y,z$ be linearly independent vectors in $\scrH$. Find a necessary and sufficient condition that a vector $w$ mush satisfy in order that the bilinear functional $$\bex F(u,v)=\sef{x,u}\sef{y,v}+\sef{z,u}\sef{w,v} \eex$$ is elementary.
Solution.
(1). If $w=ky$ for some $k\in\bbC$, then $$\beex \bea F(u,v)&=\sef{x,u}\sef{y,v}+\sef{z,u}\sef{ky,v}\\ &=\sef{x+kz,u}\sef{y,v}, \eea \eeex$$ and thus $F$ is elementary.
(2). We now show that the condition that $w$ is a multiplier of $y$ is necessary to ensure that $F$ is elementary. It can be proved as follows easily; however, when I have not got it, it really hindered me to go forward this fun journey of the matrix analysis. We choose a basis of $\scrH$: $$\bex u_1,\cdots,u_n \eex$$ where $u_1=x,u_2=y,u_3=z$. And for $u\in \scrH$, we denote by $u_i$ the coordinate of $u$ with respect to this basis. Since $F$ is elementary, there exist $a,b\in \scrH$ such that $$\bex F(u,v)=\sef{x,u}\sef{y,v}+\sef{z,u}\sef{w,v} =\sef{a,u}\sef{b,v}. \eex$$ Taking $u=u_1$ or $u_3$, $v=u_j$ for arbitrary $j$, we obtain $$\bex F(u_1,u_j)=y_j=a_1b_j,\quad F(u_3,u_j)=w_j=a_3b_j. \eex$$ Consequently, if $a_3=0$, then $w=0=0y$; if $a_3\neq 0$s, then $$\bex w_j=a_3b_j=\frac{a_3}{a_1}b_j\ra w=\frac{a_3}{a_1}y. \eex$$ Here $a_1\neq 0$ (otherwise $y=0$).
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.1的更多相关文章
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.7
For every matrix $A$, the matrix $$\bex \sex{\ba{cc} I&A\\ 0&I \ea} \eex$$ is invertible and ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.10
Every $k\times k$ positive matrix $A=(a_{ij})$ can be realised as a Gram matrix, i.e., vectors $x_j$ ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.5
Show that the inner product $$\bex \sef{x_1\vee \cdots \vee x_k,y_1\vee \cdots\vee y_k} \eex$$ is eq ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.1
Show that the inner product $$\bex \sef{x_1\wedge \cdots \wedge x_k,y_1\wedge \cdots\wedge y_k} \eex ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.6
Let $A$ and $B$ be two matrices (not necessarily of the same size). Relative to the lexicographicall ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.4
(1). There is a natural isomorphism between the spaces $\scrH\otimes \scrH^*$ and $\scrL(\scrH,\scrK ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.8
For any matrix $A$ the series $$\bex \exp A=I+A+\frac{A^2}{2!}+\cdots+\frac{A^n}{n!}+\cdots \eex$$ c ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.7
The set of all invertible matrices is a dense open subset of the set of all $n\times n$ matrices. Th ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.6
If $\sen{A}<1$, then $I-A$ is invertible, and $$\bex (I-A)^{-1}=I+A+A^2+\cdots, \eex$$ aa converg ...
随机推荐
- 关于MySQL Connector/C++那点事儿
如果从官方直接下载的库使用时遇到类似如下的问题: 原因是官方提供的库文件版本与需要的库版本不匹配,提供的debug版本使用的是MT版本,在debug模式下会出现内存错误,导致crash. TestC. ...
- 【BZOJ 1079】[SCOI2008]着色方案
Description 有n个木块排成一行,从左到右依次编号为1~n.你有k种颜色的油漆,其中第i种颜色的油漆足够涂ci个木块.所有油漆刚好足够涂满所有木块,即c1+c2+...+ck=n.相邻两个木 ...
- 【BZOJ 2038】[2009国家集训队]小Z的袜子(hose)
Description HH有一串由各种漂亮的贝壳组成的项链.HH相信不同的贝壳会带来好运,所以每次散步 完后,他都会随意取出一段贝壳,思考它们所表达的含义.HH不断地收集新的贝壳,因此, 他的项链变 ...
- C++中头文件相互包含与前置声明
一.类嵌套的疑问 C++头文件重复包含实在是一个令人头痛的问题,前一段时间在做一个简单的数据结构演示程序的时候,不只一次的遇到这种问题.假设我们有两个类A和B,分别定义在各自的有文件A.h和B.h中, ...
- JavaScript中常谈的对象
为浏览器编写代码时,总少不了window对象 window对象表示JavaScript程序的全局环境 同时 也表示应用的主窗口 到处都是对象 window对象 常用的属性和方法介绍 location ...
- 提升网站性能之设置gzip
tomcat如何设置gzip: http://www.tuicool.com/articles/aMRRFre http://blog.csdn.net/xuefeng0707/article/det ...
- Visual Studio 2013 之 Productivity Power Tools
http://blogs.msdn.com/b/visualstudio_cn/archive/2014/02/20/visual-studio-2013-productivity-power-too ...
- Netty4.x中文教程系列(一) Hello World !
1.下载并为项目添加Netty框架 1. Netty的包大家可以从Netty官网:http://netty.io/downloads.html 下载 如图所示: Netty提供了四个个主要版本的框架包 ...
- 详细解析: VictorOps 是如何利用和完善 ChatOps?
ChatOps,即聊天应用,在软件开发中被广泛应用改进开发者之间的沟通.简单地说,ChatOps 是将内容或行动 (或两者) 迁移到聊天客户端.这样做之后,企业内的所有团队都能分享重要信息,行动,及其 ...
- 10 things you should know about NoSQL databases
For a quarter of a century, the relational database (RDBMS) has been the dominant model for database ...