[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.1
Let $x,y,z$ be linearly independent vectors in $\scrH$. Find a necessary and sufficient condition that a vector $w$ mush satisfy in order that the bilinear functional $$\bex F(u,v)=\sef{x,u}\sef{y,v}+\sef{z,u}\sef{w,v} \eex$$ is elementary.
Solution.
(1). If $w=ky$ for some $k\in\bbC$, then $$\beex \bea F(u,v)&=\sef{x,u}\sef{y,v}+\sef{z,u}\sef{ky,v}\\ &=\sef{x+kz,u}\sef{y,v}, \eea \eeex$$ and thus $F$ is elementary.
(2). We now show that the condition that $w$ is a multiplier of $y$ is necessary to ensure that $F$ is elementary. It can be proved as follows easily; however, when I have not got it, it really hindered me to go forward this fun journey of the matrix analysis. We choose a basis of $\scrH$: $$\bex u_1,\cdots,u_n \eex$$ where $u_1=x,u_2=y,u_3=z$. And for $u\in \scrH$, we denote by $u_i$ the coordinate of $u$ with respect to this basis. Since $F$ is elementary, there exist $a,b\in \scrH$ such that $$\bex F(u,v)=\sef{x,u}\sef{y,v}+\sef{z,u}\sef{w,v} =\sef{a,u}\sef{b,v}. \eex$$ Taking $u=u_1$ or $u_3$, $v=u_j$ for arbitrary $j$, we obtain $$\bex F(u_1,u_j)=y_j=a_1b_j,\quad F(u_3,u_j)=w_j=a_3b_j. \eex$$ Consequently, if $a_3=0$, then $w=0=0y$; if $a_3\neq 0$s, then $$\bex w_j=a_3b_j=\frac{a_3}{a_1}b_j\ra w=\frac{a_3}{a_1}y. \eex$$ Here $a_1\neq 0$ (otherwise $y=0$).
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.1的更多相关文章
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.7
For every matrix $A$, the matrix $$\bex \sex{\ba{cc} I&A\\ 0&I \ea} \eex$$ is invertible and ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.10
Every $k\times k$ positive matrix $A=(a_{ij})$ can be realised as a Gram matrix, i.e., vectors $x_j$ ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.5
Show that the inner product $$\bex \sef{x_1\vee \cdots \vee x_k,y_1\vee \cdots\vee y_k} \eex$$ is eq ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.1
Show that the inner product $$\bex \sef{x_1\wedge \cdots \wedge x_k,y_1\wedge \cdots\wedge y_k} \eex ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.6
Let $A$ and $B$ be two matrices (not necessarily of the same size). Relative to the lexicographicall ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.4
(1). There is a natural isomorphism between the spaces $\scrH\otimes \scrH^*$ and $\scrL(\scrH,\scrK ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.8
For any matrix $A$ the series $$\bex \exp A=I+A+\frac{A^2}{2!}+\cdots+\frac{A^n}{n!}+\cdots \eex$$ c ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.7
The set of all invertible matrices is a dense open subset of the set of all $n\times n$ matrices. Th ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.6
If $\sen{A}<1$, then $I-A$ is invertible, and $$\bex (I-A)^{-1}=I+A+A^2+\cdots, \eex$$ aa converg ...
随机推荐
- bnuoj 4187 GCC (数论)
http://www.bnuoj.com/bnuoj/problem_show.php?pid=4187 [题意]:如题 [题解]:取n,m的最小值进行遍历就可以了: 注意 0 1 这组测试数据 [c ...
- 一个好用且方便的FastCgi C++库 - FastCgi++
不知道你是不是曾经发愁过使用FastCgi库来使用C++开发Fastcgi程序繁琐而且会与C++ STL代码产生冲突的地方,或者你还是习惯了cout而不是pringf,那这篇文章就可以了解到一个使用的 ...
- Javascript和ECMAScript二三事
来自<javascript高级程序设计 第三版:作者Nicholas C. Zakas>的学习笔记(一) Javascript是一种专为与网页交互而设计的脚本语言,由下列三个不同部分组成: ...
- ACCESS数据库操作教程
网易学院视频教程: 上:http://tech.163.com/06/0621/17/2K5K0C2200091U6J.html中:http://tech.163.com/06/0621/17/2K5 ...
- ***php 数组添加关联元素的方法小结(关联数组添加元素)
我们这里介绍的是在数组中再增加关联数组了,这个就合成了多维数组,下面我来给大家举几个实例,希望对各位同学会有所帮助哈. 在"php 数组添加元素方法总结这篇文章中介绍了如何给数组添加元素,那 ...
- HDU 2992 Hotel booking(BFS+DFS 或者 SPFA+Floyd)
点我看题目 题意 : 一个司机要从1点到达n点,1点到n点中有一些点有宾馆,司机的最长开车时间不能超过10小时,所以要在10小时之内找到宾馆休息,但是为了尽快的走到n点,问最少可以经过几个宾馆. 思路 ...
- POJ3204+DInic+maxflow
Dinic+maxflow题意:找这样一种边的个数,就是增加该边的容量,可以使得最大流变大思路:求maxflow,再枚举流量为0的边,增加容量,看是否能找到增广路径. /* Dinic+maxflow ...
- What is the innovator’s solution——什么才是创新的解决方案2
前略:http://www.cnblogs.com/Kassadin/p/4233497.html 案例1 从书上的一个案例开始: 让我们来看看AT&T公司(美国电话电报公司)的案例吧.198 ...
- [itint5]两有序数组的中位数
这个题和leetcode的基本一样.用了更好点的思路.在A中折半猜是不是中位数,A中没有后在B中猜.最后猜到B[j]<=A[i]<=B[j+1],此时,无论奇偶(2k+1或者2k个),A[ ...
- php Ajax 局部刷新
php Ajax 局部刷新: HTML部分 </head> <body> <h1>Ajax动态显示时间</h1> <input type=&quo ...