Let $x,y,z$ be linearly independent vectors in $\scrH$. Find a necessary and sufficient condition that a vector $w$ mush satisfy in order that the bilinear functional $$\bex F(u,v)=\sef{x,u}\sef{y,v}+\sef{z,u}\sef{w,v} \eex$$ is elementary.

Solution.

(1). If $w=ky$ for some $k\in\bbC$, then $$\beex \bea F(u,v)&=\sef{x,u}\sef{y,v}+\sef{z,u}\sef{ky,v}\\ &=\sef{x+kz,u}\sef{y,v}, \eea \eeex$$ and thus $F$ is elementary.

(2). We now show that the condition that $w$ is a multiplier of $y$ is necessary to ensure that $F$ is elementary. It can be proved as follows easily; however, when I have not got it, it really hindered me to go forward this fun journey of the matrix analysis. We choose a basis of $\scrH$: $$\bex u_1,\cdots,u_n \eex$$ where $u_1=x,u_2=y,u_3=z$. And for $u\in \scrH$, we denote by $u_i$ the coordinate of $u$ with respect to this basis. Since $F$ is elementary, there exist $a,b\in \scrH$ such that $$\bex F(u,v)=\sef{x,u}\sef{y,v}+\sef{z,u}\sef{w,v} =\sef{a,u}\sef{b,v}. \eex$$ Taking $u=u_1$ or $u_3$, $v=u_j$ for arbitrary $j$, we obtain $$\bex F(u_1,u_j)=y_j=a_1b_j,\quad F(u_3,u_j)=w_j=a_3b_j. \eex$$ Consequently, if $a_3=0$, then $w=0=0y$; if $a_3\neq 0$s, then $$\bex w_j=a_3b_j=\frac{a_3}{a_1}b_j\ra w=\frac{a_3}{a_1}y. \eex$$ Here $a_1\neq 0$ (otherwise $y=0$).

[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.1的更多相关文章

  1. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.7

    For every matrix $A$, the matrix $$\bex \sex{\ba{cc} I&A\\ 0&I \ea} \eex$$ is invertible and ...

  2. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.10

    Every $k\times k$ positive matrix $A=(a_{ij})$ can be realised as a Gram matrix, i.e., vectors $x_j$ ...

  3. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.5

    Show that the inner product $$\bex \sef{x_1\vee \cdots \vee x_k,y_1\vee \cdots\vee y_k} \eex$$ is eq ...

  4. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.1

    Show that the inner product $$\bex \sef{x_1\wedge \cdots \wedge x_k,y_1\wedge \cdots\wedge y_k} \eex ...

  5. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.6

    Let $A$ and $B$ be two matrices (not necessarily of the same size). Relative to the lexicographicall ...

  6. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.4

    (1). There is a natural isomorphism between the spaces $\scrH\otimes \scrH^*$ and $\scrL(\scrH,\scrK ...

  7. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.8

    For any matrix $A$ the series $$\bex \exp A=I+A+\frac{A^2}{2!}+\cdots+\frac{A^n}{n!}+\cdots \eex$$ c ...

  8. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.7

    The set of all invertible matrices is a dense open subset of the set of all $n\times n$ matrices. Th ...

  9. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.6

    If $\sen{A}<1$, then $I-A$ is invertible, and $$\bex (I-A)^{-1}=I+A+A^2+\cdots, \eex$$ aa converg ...

随机推荐

  1. iOS 基础 第五天(0811)

    0811 ARC ARC判断准则:只要没有强指针指向对象,就会释放对象 指针 指针分两种: 强指针:默认情况下,搜有的指针都是强指针 弱指针:week修饰(一个是控件,一个是delegate代理) 循 ...

  2. OO之观察者模式

    以下为观察者模式详解: 引子: 假设有这样一个问题,有一条河经过一个山谷,山谷下有一个村庄,人们在山谷处修建了一个水库,并安排专人管理,当水库的水位过高时要通知下游居民注意水库的开闸放水,当水库的水温 ...

  3. Delphi与Qt在Windows下使用共享内存进程间通信

    Delphi部分 type  TGuardInfo=record    Lock: Integer;  end;  PGuardInfo = ^TGuardInfo; TGuardShareMem=c ...

  4. ios设备 分辨率(转)

    1 iOS设备的分辨率 iOS设备,目前最主要的有3种(Apple TV等不在此讨论),按分辨率分为两类 iPhone/iPod Touch 普屏分辨率    320像素 x 480像素 Retina ...

  5. 使用Pod集成Bugtags填坑记

    最近某朋友的朋友的创业公司新出了一个工具叫Bugtags,说是可以让APP测试变得so easy,于是动手来做1.1.0的版本集成,先把WEB首页贴在下面,感兴趣的同学可以去look一下:https: ...

  6. JavaScript中创建字典对象(dictionary)实例

    这篇文章主要介绍了JavaScript中创建字典对象(dictionary)实例,本文直接给出了实现的源码,并给出了使用示例,需要的朋友可以参考下 对于JavaScript来说,其自身的Array对象 ...

  7. [转载]jquery ajax/post/get 传参数给 mvc的action

    jquery ajax/post/get 传参数给 mvc的action 1.ActionResult Test1     2.View  Test1.aspx 3.ajax page 4.MetaO ...

  8. Python的作用域

    Python的作用域 转自:http://www.cnblogs.com/frydsh/archive/2012/08/12/2602100.html Python是静态作用域语言,尽管它自身是一个动 ...

  9. jsp关于include html、jsp等文件出现乱码问题的解决方案

    一般来说使用jsp标签<jsp:include>引入一个jsp文件: ①可以在被引入的jsp中加入:<%@ page contentType="text/html;char ...

  10. GridView中DataKeyNames的应用小结

    一. GridView的DataKeyNames属性设为"ID,Name" GridView1.DataKeyNames = new string[]{ "ID" ...