MATLAB LU函数

高斯消元法求解线性方程,包括把增广矩阵转换为三角矩阵形式的过程,消去阶段工作
步骤是把矩阵A分解成为下三角L和上三角U的乘积。这种计算L,U的过程称为LU分解法。
lu实现对矩阵的分解。
[L,U] = lu(A)
%%将矩阵A分解的上三角矩阵保存在U当中,将一个“心理学上的”下三角矩阵(例如一个下三角矩阵和置换矩阵的乘积)保存在L中,满足A=L*U,注意A不必须是方阵。
[L,U,P] = lu(A)
%%返回三个矩阵,下三角矩阵L、上三角矩阵U和一个置换矩阵P,满足P*A=L*U。
[L,U,p] = lu(A,'vector')
%%将使用向量而不是矩阵的方式返回置换信息,p是一个行向量,满足A(p,:) = L*U,如果使用[L,U,P] = lu(A,'matrix')则返回的P是向量,这也是默认的形式。
[L1,U1]=lu(x)
[L2,U2,P]=lu(x)
[L3,U3,P,Q] = lu(X)
MATLAB中[L1,U1]=lu(x)的结果:L是下三角的置换矩阵即L1=p*L2,U是上三角阵。Matlab中LU分解采用高斯消元法,结果是不唯一的,只要[L1,U1]=lu(x)满足L1*U1=x, [L2,U2,P]=lu(x)满足L2*U2=p*x,[L3,U3,P,Q] = lu(X)满足 L3*U3= P*X*Q就行了
例方程组:
x1+0.2*(x2)+0.5*(x3)=1
0.2*(x1)+0.4*(x2)+x3=2
0.5*(x1)+0.1*(x2)+0.6*(x3)=1.5
根据LU分解有LUx=b,记Y=L^(-1)b,则x=U^(-1)Y为方程组Ax=b解。
>> a=[1 0.2 0.5;0.2 0.4 1; 0.5 0.1 0.6];
>> b=[1 2 1.5];
>> [L,U]=lu(a)
L =
1.0000 0 0
0.2000 1.0000 0
0.5000 0 1.0000
U =
1.0000 0.2000 0.5000
0 0.3600 0.9000
0 0 0.3500
>> y=inv(L)*b'
y =
1.0000
1.8000
1.0000
或者
>> y=L^(-1)*b'
y =
1.0000
1.8000
1.0000
>> x=U^(-1)*y
x =
0
-2.1429
2.8571
或
>> x=inv(U)*y
x =
0
-2.1429
2.8571
下面就是lu函数的厂商代码,相信这段程序,对大家编写线性方程组直接解法的诸多算法都有启发作用。
function [L,U,x]=lux(A,b)
%LU 分解法解线性方程组(列主元LU分解)
[n,n]=size(A);
p=eye(n);%p记录了选择主元时候所进行的行变换
for k=:n-
[r,m]=max(abs(A(k:n,k))); %选列主元
m=m+k-;
if(A(m,k)~=)
if(m~=k)
A([k m],:)=A([m k],:);
p([k m])=p([m k]);
end
for i=k+:n
A(i,k)=A(i,k)/A(k,k);
j=k+:n; A(i,j)=A(i,j)-A(i,k)*A(k,j);
end
end
end
L=tril(A,-)+eye(n,n);
U=triu(A);
%解下三角矩阵 Ly=b
newb=p*b;
y=zeros(n,);
for k=:n
j=:k-;
y(k)=(newb(k)-L(k,j)*y(j))/L(k,k);
end
%解上三角方程组 Ux=y
x=zeros(n,);
for k=n:-:
j=k+:n;
x(k)=(y(k)-U(k,j)*x(j))/U(k,k);
end
MATLAB LU函数的更多相关文章
- MyEclipse调用Matlab打包函数
本文部分内容参考了http://www.360doc.com/content/15/1103/16/1180274_510463048.shtml 一.检查Java环境 对于已经装上JAVA环境的计算 ...
- Matlab中函数定义方法
Matlab自定义函数的六种方法 n1.函数文件+调用函数(命令)文件:需单独定义一个自定义函数的M文件: n2.函数文件+子函数:定义一个具有多个自定义函数的M文件: n3.Inline:无需M文件 ...
- Matlab图像处理函数:regionprops
本篇文章为转载,仅为方便学术讨论所用,不用于商业用途.由于时间较久,原作者以及原始链接暂时无法找到,如有侵权以及其他任何事宜欢迎跟我联系,如有侵扰,在此提前表示歉意.----------------- ...
- 向量和矩阵的范数及MATLAB调用函数
范数就是长度的一种推广形式,数学语言叫一种度量.比如有一个平面向量,有两个分量来描述:横坐标和纵坐标.向量的二范数就是欧几里得意义下的这个向量的长度.还有一些诸如极大值范数,就是横坐标或者纵坐标的最大 ...
- matlab中函数fscanf
matlab中函数fscanf matlab中函数fscanf在文件读取方面的实例如下: 从文件中有格式地读数据 fscanf 语法1:[a,count]=fscanf(fid,format,size ...
- 用MATLAB画函数的曲线
用MATLAB画函数曲线 2013年8月11日 命令funtool 这是单变量函数分析的交互界面,比较方便,特别适用于y=f(x)型,即y与x分开的函数形式.见下图
- matlab 子函数的使用
本文参考了该篇博客:http://www.cnblogs.com/MarshallL/p/4048846.html 对其进行学习,为我所用吧. 一. 在matlab的函数定义中,如果函数如果函数较长或 ...
- matlab 常用函数
Matlab常用函数 Matlab的内部常数 eps 浮点相对精度 pi 圆周率 exp 自然对数的底数e i 或j 虚数单位 Inf或 inf 无穷大 Matlab概率密度函数 ...
- matlab——sparse函数和full函数
转载:http://www.cnblogs.com/lihuidashen/p/3435883.html matlab——sparse函数和full函数(稀疏矩阵和非稀疏矩阵转换) 函数功能:生成 ...
随机推荐
- 设计模式_Command_命令模式
形象例子: 俺有一个MM家里管得特别严,没法见面,只好借助于她弟弟在我们俩之间传送 信息,她对我有什么指示,就写一张纸条让她弟弟带给我.这不,她弟弟又传送过来一个COMMAND,为了感谢他,我请他吃了 ...
- 利用CryptoStream进行加密解密
public class DBSecurity { //sKey sIV这两个自己随意设定,不能外泄 private const string sKey = "11,22,33,43,34, ...
- SQL Server: Difference Between Locking, Blocking and Dead Locking
Like ever, today’s article of Pinal Dave was interesting and informative. After, our mutual discussi ...
- oracle ref游标
Oracle 系列:REF Cursor 在上文 Oracle 系列:Cursor (参见:http://blog.csdn.net/qfs_v/archive/2008/05/06/240479 ...
- Microsoft Azure自动化测试
在使用与微软Azure进行交互的工具并试图衡量性能时,基本上不可能得到任何类似于公平.一致的测试.在午餐时间执行的测试运行会得的一套计时与晚上每个人都离开办公室执行的测试所到的结果可能完全不同.结果取 ...
- 【转】Linux 技巧: Bash 参数和参数扩展
重点看下清单7 现在,很多 Linux® 和 UNIX® 系统上都有 bash shell,它是 Linux 上常见的默认 shell.通过本文,您将了解到如何在 bash 脚本中处理参数和选项,以及 ...
- HW6.24
public class Solution { public static void main(String[] args) { int count = 0; int color; int numbe ...
- OpenSSH 密钥管理:RSA/DSA 认证(转载)
我们中有许多人把优秀的 OpenSSH用作古老的 telnet 和 rsh 命令的替代品,OpenSSH 不仅是安全的而且是加密的. OpenSSH 更加吸引人的特性之一是它能够使用基于一对互补的数字 ...
- Android实例-打电话、发短信和邮件,取得手机IMEI号(XE8+小米2)
结果: 1.不提示发短信卡住,点击没有反映,我猜想,可能是因为我用的是小米手机吧. 2.接收短信报错,我猜想可能是我改了里面的方法吧(哪位大神了解,求指教). 3.project -->opti ...
- hdoj 2023 求平均成绩
求平均成绩 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submi ...