Perfect Cubes
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 14901   Accepted: 7804

Description

For hundreds of years Fermat's Last Theorem, which stated simply that for n > 2 there exist no integers a, b, c > 1 such that a^n = b^n + c^n, has remained elusively unproven. (A recent proof is believed to be correct, though it is still undergoing scrutiny.) It is possible, however, to find integers greater than 1 that satisfy the "perfect cube" equation a^3 = b^3 + c^3 + d^3 (e.g. a quick calculation will show that the equation 12^3 = 6^3 + 8^3 + 10^3 is indeed true). This problem requires that you write a program to find all sets of numbers {a,b,c,d} which satisfy this equation for a <= N.

Input

One integer N (N <= 100).

Output

The output should be listed as shown below, one perfect cube per line, in non-decreasing order of a (i.e. the lines should be sorted by their a values). The values of b, c, and d should also be listed in non-decreasing order on the line itself. There do exist several values of a which can be produced from multiple distinct sets of b, c, and d triples. In these cases, the triples with the smaller b values should be listed first.

Sample Input

24

Sample Output

Cube = 6, Triple = (3,4,5)
Cube = 12, Triple = (6,8,10)
Cube = 18, Triple = (2,12,16)
Cube = 18, Triple = (9,12,15)
Cube = 19, Triple = (3,10,18)
Cube = 20, Triple = (7,14,17)
Cube = 24, Triple = (12,16,20) 题意:找出2到n中,所有满足a^3=b^3+c^3+d^3的a,b,c,d的数
#include<stdio.h>
#include<string.h>
#include<cstdio>
#include<string>
#include<math.h>
#include<algorithm>
#define LL long long
#define PI atan(1.0)*4
#define DD double
#define MAX 2002000
#define mod 100
#define dian 1.000000011
#define INF 0x3f3f3f
using namespace std;
int main()
{
int n,m,j,i,t,k,l;
int vis[1000];
int a[150];
while(scanf("%d",&n)!=EOF)
{
for(i=1;i<=n;i++)
a[i]=pow(i,3);
for(i=6;i<=n;i++)
{
memset(vis,0,sizeof(vis));
for(j=2;j<i;j++)
{
if(a[i]<a[j]+a[j+1]+a[j+2])
break;
for(k=j;k<i;k++)
{
if(a[i]<a[j]+a[k]+a[k+1]) break;
for(l=k;l<i;l++)
{
if(a[i]==a[j]+a[k]+a[l])
{
printf("Cube = %d, Triple = (%d,%d,%d)\n",i,j,k,l);
}
}
}
}
}
}
return 0;
}

  

poj 1543 Perfect Cubes(注意剪枝)的更多相关文章

  1. OpenJudge 2810(1543) 完美立方 / Poj 1543 Perfect Cubes

    1.链接地址: http://bailian.openjudge.cn/practice/2810/ http://bailian.openjudge.cn/practice/1543/ http:/ ...

  2. POJ 1543 Perfect Cubes

    Perfect Cubes Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 12595   Accepted: 6707 De ...

  3. poj 1543 Perfect Cubes (暴搜)

    Perfect Cubes Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 15302   Accepted: 7936 De ...

  4. POJ 3398 Perfect Service(树型动态规划,最小支配集)

    POJ 3398 Perfect Service(树型动态规划,最小支配集) Description A network is composed of N computers connected by ...

  5. POJ 3905 Perfect Election(2-sat)

    POJ 3905 Perfect Election id=3905" target="_blank" style="">题目链接 思路:非常裸的 ...

  6. poj 1011 Sticks (DFS+剪枝)

    Sticks Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 127771   Accepted: 29926 Descrip ...

  7. POJ 1011 Sticks(dfs+剪枝)

    http://poj.org/problem?id=1011 题意:若干个相同长度的棍子被剪成若干长度的小棍,求每根棍子原来的可能最小长度. 思路:很经典的搜索题. 我一开始各种超时,这题需要很多剪枝 ...

  8. POJ 1011 Sticks 【DFS 剪枝】

    题目链接:http://poj.org/problem?id=1011 Sticks Time Limit: 1000MS   Memory Limit: 10000K Total Submissio ...

  9. poj 3714 Raid【(暴力+剪枝) || (分治法+剪枝)】

    题目:  http://poj.org/problem?id=3714 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=27048#prob ...

随机推荐

  1. R programming, In ks.test(x, y) : p-value will be approximate in the presence of ties

    Warning message: In ks.test(x, y) : p-value will be approximate in the presence of ties   The warnin ...

  2. Nodejs express中创建ejs项目 error install Couldn't read dependencies

    最近在看<Node.js开发指南>,看到使用nodejs进行web开发的时候,准备创建ejs项目遇到问题了   书上命令为:   express -t ejs microblog 可是执行 ...

  3. 页面多个Jquery版本共存的冲突问题,解决方法!

    示例如下: <script type="text/javascript" src="jquery.js"></script> <s ...

  4. RTP协议之Header结构解析

    实时传输协议 RTP,RTP 提供带有实时特性的端对端数据传输服务,传输的数据如:交互式的音频和视频.那些服务包括有效载荷类型定义,序列号,时间戳和传输监测控制.应用程序在 UDP 上运行 RTP 来 ...

  5. solr4.5配置中文分词器mmseg4j

    solr4.x虽然提供了分词器,但不太适合对中文的分词,给大家推荐一个中文分词器mmseg4j mmseg4j的下载地址:https://code.google.com/p/mmseg4j/ 通过以下 ...

  6. 分布式发布订阅消息系统 Kafka 架构设计

    我们为什么要搭建该系统 Kafka是一个分布式.分区的.多副本的.多订阅者的“提交”日志系统. 我们构建这个系统是因为我们认为,一个实现完好的操作日志系统是一个最基本的基础设施,它可以替代一些系统来作 ...

  7. XA事务处理

    XA接口详解 X/Open XA接口是双向的系统接口,在事务管理器(Transaction Manager)以及一个或多个资源管理器(Resource Manager)之间形成通信桥梁.事务管理器控制 ...

  8. PHP学习笔记--文件目录操作(文件上传实例)

    文件操作是每个语言必须有的,不仅仅局限于PHP,这里我们就仅用PHP进行讲解 php的文件高级操作和文件上传实例我放在文章的最后部分.--以后我还会给大家写一个PHP类似于网盘操作的例子 注意:阅读此 ...

  9. Cutting Sticks

    题意: l长的木棒,给出n个切割点,每切一次的费用为切得木棒的长度,完成切割的最小费用. 分析: 区间dp入门,区间dp的特点,一个大区间的解可以转换成小区间的解组合起来,每个切割点的标号代表边界. ...

  10. codedorces 260 div2 A题

    水题,扫描一遍看是否出现价格低质量高的情况. #include<cstdio> #include<string> #include<vector> #include ...