UVA 11149 Power of Matrix 快速幂
题目链接:
http://acm.hust.edu.cn/vjudge/contest/122094#problem/G
Power of Matrix
Time Limit:3000MSMemory Limit:0KB
#### 问题描述
> 给你一个矩阵A,求A+A^2+A^3+...+A^k
#### 输入
> Input consists of no more than 20 test cases. The first line for each case contains two positive integers n
> (≤ 40) and k (≤ 1000000). This is followed by n lines, each containing n non-negative integers, giving
> the matrix A.
> Input is terminated by a case where n = 0. This case need NOT be processed.
输出
For each case, your program should compute the matrix A + A2 + A3 + . . . + Ak
. Since the values may
be very large, you only need to print their last digit. Print a blank line after each case.
样例
sample input
3 2
0 2 0
0 0 2
0 0 0
0 0sample output
0 2 4
0 0 2
0 0 0
题解
A+A2+...Ak=(I+A(n/2))(A+...+A(n/2))=...
一直递推下去,深度只有logn,只要logn次快速幂求A^x。
代码
WA四次的代码:
#include<iostream>
#include<cstring>
#include<cstdio>
using namespace std;
const int maxn = 55;
const int mod = 10;
typedef int LL;
struct Matrix {
LL mat[maxn][maxn];
Matrix() { memset(mat, 0, sizeof(mat)); }
friend Matrix operator *(const Matrix& A, const Matrix& B);
friend Matrix operator +(const Matrix &A,const Matrix &B);
friend Matrix operator ^(Matrix A, int n);
};
Matrix I;
Matrix operator +(const Matrix& A, const Matrix& B) {
Matrix ret;
for (int i = 0; i < maxn; i++) {
for (int j = 0; j < maxn; j++) {
ret.mat[i][j] = (A.mat[i][j] + B.mat[i][j])%mod;
}
}
return ret;
}
Matrix operator *(const Matrix& A, const Matrix& B) {
Matrix ret;
for (int i = 0; i < maxn; i++) {
for (int j = 0; j < maxn; j++) {
for (int k = 0; k < maxn; k++) {
ret.mat[i][j] = (ret.mat[i][j]+A.mat[i][k] * B.mat[k][j]) % mod;
}
}
}
return ret;
}
Matrix operator ^(Matrix A, int n) {
Matrix ret=I;
while (n) {
if (n & 1) ret = ret*A;
A = A*A;
n /= 2;
}
return ret;
}
Matrix solve(Matrix A, int n) {
if (!n) return I;
if (n == 1) return A;
//这里要加括号!!! ret=I+(A^(n/2))!!!
Matrix ret = I + A ^ (n / 2);
ret = ret*solve(A, n / 2);
//这里也要加!!!! ret=ret+(A^n)!!!
if (n % 2) ret = ret + A^n;
return ret;
}
int n, k;
int main() {
for (int i = 0; i < maxn; i++) I.mat[i][i] = 1;
while (scanf("%d%d", &n, &k) == 2 && n) {
Matrix A;
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
scanf("%d", &A.mat[i][j]);
A.mat[i][j] %= mod;
}
}
Matrix ans=solve(A, k);
for (int i = 0; i < n; i++) {
for (int j = 0; j < n-1; j++) {
printf("%d ",ans.mat[i][j]);
}
printf("%d\n", ans.mat[i][n - 1]);
}
printf("\n");
}
return 0;
}
保险一些的写法:
#include<iostream>
#include<cstring>
#include<cstdio>
using namespace std;
const int maxn = 55;
const int mod = 10;
typedef int LL;
struct Matrix {
LL mat[maxn][maxn];
Matrix() { memset(mat, 0, sizeof(mat)); }
friend Matrix operator *(const Matrix& A, const Matrix& B);
friend Matrix operator +(const Matrix &A,const Matrix &B);
friend Matrix pow(Matrix A, int n);
};
Matrix I;
Matrix operator +(const Matrix& A, const Matrix& B) {
Matrix ret;
for (int i = 0; i < maxn; i++) {
for (int j = 0; j < maxn; j++) {
ret.mat[i][j] = (A.mat[i][j] + B.mat[i][j])%mod;
}
}
return ret;
}
Matrix operator *(const Matrix& A, const Matrix& B) {
Matrix ret;
for (int i = 0; i < maxn; i++) {
for (int j = 0; j < maxn; j++) {
for (int k = 0; k < maxn; k++) {
ret.mat[i][j] = (ret.mat[i][j]+A.mat[i][k] * B.mat[k][j]) % mod;
}
}
}
return ret;
}
Matrix pow(Matrix A, int n) {
Matrix ret=I;
while (n) {
if (n & 1) ret = ret*A;
A = A*A;
n /= 2;
}
return ret;
}
Matrix solve(Matrix A, int n) {
if (!n) return I;
if (n == 1) return A;
Matrix ret = I + pow(A,n/2);
ret = ret*solve(A, n / 2);
if (n % 2) ret = ret + pow(A,n);
return ret;
}
int n, k;
int main() {
for (int i = 0; i < maxn; i++) I.mat[i][i] = 1;
while (scanf("%d%d", &n, &k) == 2 && n) {
Matrix A;
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
scanf("%d", &A.mat[i][j]);
A.mat[i][j] %= mod;
}
}
Matrix ans=solve(A, k);
for (int i = 0; i < n; i++) {
for (int j = 0; j < n-1; j++) {
printf("%d ",ans.mat[i][j]);
}
printf("%d\n", ans.mat[i][n - 1]);
}
printf("\n");
}
return 0;
}
UVA 11149 Power of Matrix 快速幂的更多相关文章
- UVA 11149 - Power of Matrix(矩阵乘法)
UVA 11149 - Power of Matrix 题目链接 题意:给定一个n*n的矩阵A和k,求∑kiAi 思路:利用倍增去搞.∑kiAi=(1+Ak/2)∑k/2iAi,不断二分就可以 代码: ...
- UVa 11149 Power of Matrix (矩阵快速幂,倍增法或构造矩阵)
题意:求A + A^2 + A^3 + ... + A^m. 析:主要是两种方式,第一种是倍增法,把A + A^2 + A^3 + ... + A^m,拆成两部分,一部分是(E + A^(m/2))( ...
- UVa 11149 Power of Matrix(倍增法、矩阵快速幂)
题目链接: 传送门 Power of Matrix Time Limit: 3000MS Description 给一个n阶方阵,求A1+A2+A3+......Ak. 思路 A1+A2+. ...
- UVA 11149 Power of Matrix
矩阵快速幂. 读入A矩阵之后,马上对A矩阵每一个元素%10,否则会WA..... #include<cstdio> #include<cstring> #include< ...
- UVa 11149 Power of Matrix 矩阵快速幂
题意: 给出一个\(n \times n\)的矩阵\(A\),求\(A+A^2+A^3+ \cdots + A^k\). 分析: 这题是有\(k=0\)的情况,我们一开始先特判一下,直接输出单位矩阵\ ...
- UVA - 11149 Power of Matrix(矩阵倍增)
题意:已知N*N的矩阵A,输出矩阵A + A2 + A3 + . . . + Ak,每个元素只输出最后一个数字. 分析: A + A2 + A3 + . . . + An可整理为下式, 从而可以用lo ...
- UVA 11149 Power of Matrix 构造矩阵
题目大意:意思就是让求A(A是矩阵)+A2+A3+A4+A5+A6+······+AK,其中矩阵范围n<=40,k<=1000000. 解题思路:由于k的取值范围很大,所以很自然地想到了二 ...
- UVA 11149.Power of Matrix-矩阵快速幂倍增
Power of Matrix UVA - 11149 代码: #include <cstdio> #include <cstring> #include < ...
- POJ 3233:Matrix Power Series 矩阵快速幂 乘积
Matrix Power Series Time Limit: 3000MS Memory Limit: 131072K Total Submissions: 18450 Accepted: ...
随机推荐
- 如何使用10个小时搭建出个人域名而又Geek的独立博客?
1.安装准备软件 Node.js.Git.GitHub DeskTop(前两个必须安装,后者可选) 2.本地搭建hexo框架.配置主题.修改参数.实现本地测试预览 3.链接GitHub.实现在线预览 ...
- JQuery处理json与ajax返回JSON实例
一.JSON的一些基础知识. JSON中对象通过“{}”来标识,一个“{}”代表一个对象,如{“AreaId”:”123”},对象的值是键值对的形式(key:value). “[]”,标识数组,数组内 ...
- [转] 正则表达式 oracle
地址:http://www.cnblogs.com/Azhu/archive/2012/04/03/2431127.html 从oracle database 10gsql 开发指南中copy的. 正 ...
- .NET使用QRCodeEncoder生成二维码
ThoughtWorks.QRCode.dll版本 1.0.2774.19990 代码如下: /// <summary> /// 生成二维码图片 /// </summary> ...
- javascript之基本包装类型(Boolean,Number,String)基础篇
前几天整理了javascript中Array方面的知识,但是String中的一些方法多多少少和Array里的方法有些类似容易混淆,就顺便连同String所在的包装类一起整理一下,希望可以帮助到初学者, ...
- hdu 2066 一个人的旅行 Dijkstra
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2066 题意分析:以草儿家为原点,给出城市间相互抵达的时间,给出草儿想去的城市,求最短时间.典型的单源最 ...
- Integer类型值相等或不等分析
看到博客园一位博友写的面试问题,其中一题是 Integer a = 1; Integer b = 1 ; (a == b)?true :false; 当时我一看,这不是明显的true 嘛, 看到评论 ...
- ARM寄存器的8种寻址方式01
一.立即数寻址 操作数由指令本身给出 MOV r0,#0x0F //是所有寻址方式里面速度最快的,但是受到合法立即数的限制 立即数要求以#和$开头 十六进制,#后跟0x:十进制,#后直接加:八进制,# ...
- 状态模式(State)
状态模式,从字面意思上来讲应该是很简单的,就是针对实际业务上的内容,当类的内部的状态发生改变时,给出不同的响应体,就像现实中的人一样,早上没有吃饭,状态不好,上班.上课都会打哈欠,中午了,吃过午饭,又 ...
- Window Phone 8开发问题反思
项目开发有段时间了,进入了阶段测试.然而在测试过程中bug连连不断,在抱怨产品需求的坑爹.不合理之外,我也一直在反思为什么会出现这么多Bug. 首先,由于项目开发的两个人都是新手,在刚刚认识MVVM架 ...