tf.nn.sigmoid_cross_entropy_with_logits
tf.nn.sigmoid_cross_entropy_with_logits
sigmoid_cross_entropy_with_logits(
_sentinel=None,
labels=None,
logits=None,
name=None
)
功能说明:
参数列表:
| 参数名 | 必选 | 类型 | 说明 |
|---|---|---|---|
| _sentinel | 否 | None | 没有使用的参数 |
| labels | 否 | Tensor | type, shape 与 logits相同 |
| logits | 否 | Tensor | type 是 float32 或者 float64 |
| name | 否 | string | 运算名称 |
import tensorflow as tf
x = tf.constant([1,2,3,4,5,6,7],dtype=tf.float64)
y = tf.constant([1,1,1,0,0,1,0],dtype=tf.float64)
loss = tf.nn.sigmoid_cross_entropy_with_logits(labels = y,logits = x)
with tf.Session() as sess:
print (sess.run(loss))
tf.nn.sigmoid_cross_entropy_with_logits的更多相关文章
- tf.nn.sigmoid_cross_entropy_with_logits 分类
tf.nn.sigmoid_cross_entropy_with_logits(_sentinel=None,,labels=None,logits=None,name=None) logits和la ...
- Tensorflow BatchNormalization详解:4_使用tf.nn.batch_normalization函数实现Batch Normalization操作
使用tf.nn.batch_normalization函数实现Batch Normalization操作 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考文献 吴恩达deeplearnin ...
- TF-卷积函数 tf.nn.conv2d 介绍
转自 http://www.cnblogs.com/welhzh/p/6607581.html 下面是这位博主自己的翻译加上测试心得 tf.nn.conv2d是TensorFlow里面实现卷积的函数, ...
- tf.nn.embedding_lookup TensorFlow embedding_lookup 函数最简单实例
tf.nn.embedding_lookup TensorFlow embedding_lookup 函数最简单实例 #!/usr/bin/env python # -*- coding: utf-8 ...
- tf.nn.conv2d 和 tf.nn.max_pool 中 padding 分别为 'VALID' 和 'SAME' 的直觉上的经验和测试代码
这个地方一开始是迷糊的,写代码做比较分析,总结出直觉上的经验. 某人若想看精准的解释,移步这个网址(http://blog.csdn.net/fireflychh/article/details/73 ...
- 【TensorFlow基础】tf.add 和 tf.nn.bias_add 的区别
1. tf.add(x, y, name) Args: x: A `Tensor`. Must be one of the following types: `bfloat16`, `half`, ...
- tf.nn.conv2d。卷积函数
tf.nn.conv2d是TensorFlow里面实现卷积的函数,参考文档对它的介绍并不是很详细,实际上这是搭建卷积神经网络比较核心的一个方法,非常重要 tf.nn.conv2d(input, fil ...
- 深度学习原理与框架-图像补全(原理与代码) 1.tf.nn.moments(求平均值和标准差) 2.tf.control_dependencies(先执行内部操作) 3.tf.cond(判别执行前或后函数) 4.tf.nn.atrous_conv2d 5.tf.nn.conv2d_transpose(反卷积) 7.tf.train.get_checkpoint_state(判断sess是否存在
1. tf.nn.moments(x, axes=[0, 1, 2]) # 对前三个维度求平均值和标准差,结果为最后一个维度,即对每个feature_map求平均值和标准差 参数说明:x为输入的fe ...
- 深度学习原理与框架- tf.nn.atrous_conv2d(空洞卷积) 问题:空洞卷积增加了卷积核的维度,为什么不直接使用7*7呢
空洞卷积, 从图中可以看出,对于一个3*3的卷积,可以通过使用增加卷积的空洞的个数,来获得较大的感受眼, 从第一幅图中可以看出3*3的卷积,可以通过补零的方式,变成7*7的感受眼,这里补零的个数为1, ...
随机推荐
- AI 高等数学、概率论基础
一.概论 基础引入: 原理一:[两边夹定理] 原理二:[极限] X为角度x对应的圆弧的点长: 原理三[单调性]: 引入: 二.导数 常见函数的导数: 四.应用: 求解: 泰勒展式和麦克劳林展式: 泰勒 ...
- MongodDB---初识
NoSQL介绍 一.NoSQL简介 NoSQL,全称是”Not Only Sql”,指的是非关系型的数据库. 非关系型数据库主要有这些特点:非关系型的.分布式的.开源的.水平可扩展的. 原始的目的是为 ...
- 实现一个简单的android开关
近期在学习android中的graphics中绘图系列.依照大神思路.找葫芦画瓢实现了一个开关.如图下: 记录一下实现方式: 1.画背景 上图形状.分成两个半圆与一个矩形,那么代码能够写成: priv ...
- MyEclipse或Eclipse中project的导入和导出
project的导入:将project放到对应的目录中--打开MyEclipse--光标定位在PackageExp位置(即project创建位置),右键选中并点击"Import-" ...
- 供CImage类显示的半透明PNG文件处理方法
原文链接: http://blog.sina.com.cn/s/blog_4070692f010003gy.html 前补:没想到这个帖子好像挺多人看哪……看来大家都被这个png郁闷的够呛.显示p ...
- struts系列:返回json格式的响应
一.增加依赖库 // https://mvnrepository.com/artifact/org.apache.struts/struts2-json-plugin compile group: ' ...
- tomcat jvm 参数优化
1. 内存设置 常见配置汇总 堆设置 -Xms:初始堆大小 -Xmx:最大堆大小 -XX:NewSize=n:设置年轻代大小 -XX:NewRatio=n:设置年轻代和年老代的比值.如:为3,表示年轻 ...
- Android帧布局<TabHost>标签
先贴上一段代码: main.xml: <p><?xml version="1.0" encoding="utf-8"?> <Tab ...
- nginx 配置支持URL HTML5 History 模式 与 设置代理
拾人牙慧:https://segmentfault.com/q/1010000007140360 nginx 配置支持URL HTML5 History 模式 location / { try_fil ...
- ThinkPHP在Apache和Nginx下去除index.php方法
由于项目需要,用ThinkPHP开发的程序链接要去除index.php下面说下如何解决.一.Nginx方法 由于nginx不支持PATH_INFO,所以需要进入linux终端找到nginx 的配置文件 ...