poj2528 Mayor's posters【线段树】
The citizens of Bytetown, AB, could not stand that the candidates in the mayoral election campaign have been placing their electoral posters at all places at their whim. The city council has finally decided to build an electoral wall for placing the posters and introduce the following rules:
- Every candidate can place exactly one poster on the wall.
- All posters are of the same height equal to the height of the wall; the width of a poster can be any integer number of bytes (byte is the unit of length in Bytetown).
- The wall is divided into segments and the width of each segment is one byte.
- Each poster must completely cover a contiguous number of wall segments.
They have built a wall 10000000 bytes long (such that there is enough place for all candidates). When the electoral campaign was restarted, the candidates were placing their posters on the wall and their posters differed widely in width. Moreover, the candidates started placing their posters on wall segments already occupied by other posters. Everyone in Bytetown was curious whose posters will be visible (entirely or in part) on the last day before elections.
Your task is to find the number of visible posters when all the posters are placed given the information about posters' size, their place and order of placement on the electoral wall.
Input
The first line of input contains a number c giving the number of cases that follow. The first line of data for a single case contains number 1 <= n <= 10000. The subsequent n lines describe the posters in the order in which they were placed. The i-th line among the n lines contains two integer numbers l i and ri which are the number of the wall segment occupied by the left end and the right end of the i-th poster, respectively. We know that for each 1 <= i <= n, 1 <= l i <= ri <= 10000000. After the i-th poster is placed, it entirely covers all wall segments numbered l i, l i+1 ,... , ri.
Output
For each input data set print the number of visible posters after all the posters are placed.
The picture below illustrates the case of the sample input.
Sample Input
1
5
1 4
2 6
8 10
3 4
7 10
Sample Output
4
最开始觉得和zoj1610 count colors应该是一个模板
但是交了以后发现MLE
数据范围太大 没办法直接用数组 所以要离散化
第一次用到离散化 学了个新内容 代码是借鉴了题解
eg 范围[1,6] [1.7] [2,10] [8 18] 将各点排序
1 1 2 6 7 8 10 18 离散后对应的坐标为
1 2 3 4 5 6 7 再根据原来的点把它们对应起来,则离散后坐标为
[1,3] [1,4] [2,6] [5,7]
离散化代码
for(int i = 0; i < n * 2; i += 2){
//int a, b;
scanf("%d%d",&post[i].x,&post[i + 1].x);
post[i].id = post[i + 1].id = i;
}
sort(post, post + 2 * n, cmp1);
int tot = 0, pre = 0;
for(int i = 0; i < 2 * n; i++){
if(post[i].x == pre)
post[i].x = tot;
else{
pre = post[i].x;
post[i].x = ++tot;
}
}
从后往前贴 能保证已经能看见的poster里总能有最后的一部分不会被遮住
如果发现这段区域已经被完全覆盖了就返回
完整代码
#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<iostream>
#include<limits>
#include<stack>
#include<queue>
#include<cmath>
#define inf 1000005
//Ïß¶ÎÊ÷DÌâ
//http://blog.csdn.net/dt2131/article/details/52919953
//http://www.cnblogs.com/jackge/archive/2013/04/25/3041637.html
using namespace std;
const int maxn = 100010;
int c, n,flag;
//int tree[maxn << 2], dis[maxn];
bool vis[maxn];
struct node{
int id, x;
}post[maxn << 2];
struct Tree{
int l, r;
bool vis;
}tree[maxn << 2];
void build(int L, int R, int rt)
{
tree[rt].l = L;
tree[rt].r = R;
tree[rt].vis = 0;
if(tree[rt].l == tree[rt].r)
return;
int mid = (L + R) / 2;
build(L, mid, rt * 2);
build(mid + 1, R, rt * 2 + 1);
}
void pushup(int rt)
{
tree[rt].vis = tree[2 * rt].vis && tree[2 * rt + 1].vis;
}
/*void pushdown(int rt)
{
if(tree[rt] != -1){
tree[2 * rt] = tree[2 * rt + 1] = tree[rt];
tree[rt] = -1;
}
}
void update(int a, int b, int data, int l, int r, int rt)
{
if(a <= l && b >= r){
tree[rt] = data;
return;
}
if(tree[rt] == data)
return;
pushdown(rt);
int mid = (l + r) / 2;
if(a <= mid)
update(a, b, data, l, mid, 2 * rt);
if(b > mid)
update(a, b, data, mid + 1, r, 2 * rt + 1);
}*/
/*void query(int l, int r, int rt)
{
if(tree[rt] != -1){
for(int i = l; i <= r; i++){
dis[i] = tree[rt];
}
return;
}
if(l != r && tree[rt] == -1){
int mid = (l + r) / 2;
query(l, mid, 2 * rt);
query(mid + 1, r, 2 * rt + 1);
}
}
*/
void query(int L, int R, int rt)
{
if(tree[rt].vis)
return;
if(tree[rt].l == L && tree[rt].r == R)
{
tree[rt].vis = 1;
flag = 1;
return;
}
int mid = (tree[rt].l + tree[rt].r) / 2;
if(R <= mid)
query(L, R, 2 * rt);
else if(L >= mid + 1)
query(L, R, 2 * rt + 1);
else{
query(L, mid, 2 * rt);
query(mid + 1, R, 2 * rt + 1);
}
pushup(rt);
}
bool cmp1(node a, node b)
{
return a.x < b.x;
}
bool cmp2(node a, node b)
{
if(a.id == b.id)
return a.x < b.x;
return a.id > b.id;
}
int main()
{
scanf("%d",&c);
while(c--){
scanf("%d",&n);
//memset(tree, -1, sizeof(tree));
//memset(dis, -1, sizeof(dis));
//int k = 1;
for(int i = 0; i < n * 2; i += 2){
//int a, b;
scanf("%d%d",&post[i].x,&post[i + 1].x);
post[i].id = post[i + 1].id = i;
}
sort(post, post + 2 * n, cmp1);
int tot = 0, pre = 0;
for(int i = 0; i < 2 * n; i++){
if(post[i].x == pre)
post[i].x = tot;
else{
pre = post[i].x;
post[i].x = ++tot;
}
}
build(1, 2 * n, 1);
sort(post, post + 2 * n, cmp2);
int ans = 0;
for(int i = 0; i < 2 * n; i += 2){
int l = post[i].x;
int r = post[i + 1].x;
flag = 0;
query(l, r, 1);
if(flag)
ans++;
}
/*memset(vis, 0, sizeof(vis));
int res = 0;
for(int i = 0; i < maxn;){
while(i < maxn && dis[i] == -1)
i++;
if(i >= maxn)
break;
int temp = dis[i];
if(!vis[temp]){
vis[temp] = true;
res++;
}
//res[temp]++;
while(i < maxn && dis[i] == temp)
i++;
}
/*int ans = 0;
for(int i = 0; i < maxn; i++){
ans += res[i];
}*/
printf("%d\n",ans);
}
return 0;
}
poj2528 Mayor's posters【线段树】的更多相关文章
- poj-----(2528)Mayor's posters(线段树区间更新及区间统计+离散化)
Mayor's posters Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 43507 Accepted: 12693 ...
- POJ2528 Mayor's posters —— 线段树染色 + 离散化
题目链接:https://vjudge.net/problem/POJ-2528 The citizens of Bytetown, AB, could not stand that the cand ...
- [poj2528] Mayor's posters (线段树+离散化)
线段树 + 离散化 Description The citizens of Bytetown, AB, could not stand that the candidates in the mayor ...
- poj2528 Mayor's posters(线段树之成段更新)
Mayor's posters Time Limit: 1000MSMemory Limit: 65536K Total Submissions: 37346Accepted: 10864 Descr ...
- POJ2528:Mayor's posters(线段树区间更新+离散化)
Description The citizens of Bytetown, AB, could not stand that the candidates in the mayoral electio ...
- poj2528 Mayor's posters(线段树区间修改+特殊离散化)
Description The citizens of Bytetown, AB, could not stand that the candidates in the mayoral electio ...
- poj2528 Mayor's posters(线段树区间覆盖)
Mayor's posters Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 50888 Accepted: 14737 ...
- POJ.2528 Mayor's posters (线段树 区间更新 区间查询 离散化)
POJ.2528 Mayor's posters (线段树 区间更新 区间查询 离散化) 题意分析 贴海报,新的海报能覆盖在旧的海报上面,最后贴完了,求问能看见几张海报. 最多有10000张海报,海报 ...
- Mayor's posters(线段树+离散化POJ2528)
Mayor's posters Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 51175 Accepted: 14820 Des ...
- POJ 2528 Mayor's posters(线段树+离散化)
Mayor's posters 转载自:http://blog.csdn.net/winddreams/article/details/38443761 [题目链接]Mayor's posters [ ...
随机推荐
- 获取微信小程序源码
https://blog.csdn.net/aaron9185/article/details/80576183 http://lrdcq.com/me/read.php/66.htm https:/ ...
- Android Studio 视图解析
AS一共同拥有三种视图.我们来分别分析每一种视图的作用. 一.Project视图.(白色字体的文件夹/文件可不关注) 图片中的链接 Gralde介绍:http://stormzhang.com/dev ...
- Activiti 5.1.4最佳实践
1.简单介绍 Activiti是一个开源的工作流引擎,它实现了BPMN 2.0规范,可以发布设计好的流程定义,并通过api进行流程调度. Activiti 作为一个遵从 Apache 许可的工作流和业 ...
- 【剑指Offer学习】【面试题23:从上往下打印二叉树】
题目:从上往下打印出二叉树的每一个结点,同一层的结点依照从左向右的顺序打印. 二叉树结点的定义: public static class BinaryTreeNode { int value; Bin ...
- 第一个map reduce程序
完成了第一个mapReduce例子,记录一下. 实验环境: hadoop在三台ubuntu机器上部署 开发在window7上进行 hadoop版本2.2.0 下载了hadoop-eclipse-plu ...
- 使用Postfix和Dovecot收发电子邮件
邮件应用协议包括: 简单邮件传输协议(SMTP),用来发送或中转发出的电子邮件,占用tcp 25端口. 第三版邮局协议(POP3),用于将服务器上把邮件存储到本地主机,占用tcp 110端口. 第四版 ...
- JavaScript Promise迷你书(中文版)
最近,发现了一个很不错的关于Promise介绍的迷你电子版书,分享给大家: http://liubin.org/promises-book/#chapter4-advanced-promise (篇幅 ...
- 更新npm至最新版本
npm install npm@latest –g 或者@ 符号后面直接添加你想更新到的版本号
- codeforces水题100道 第十二题 Codeforces Beta Round #91 (Div. 2 Only) A. Lucky Division (brute force)
题目链接:http://www.codeforces.com/problemset/problem/122/A题意:判断一个数是否能被一个lucky number整除,一个lucky number是一 ...
- Jdk1.8在CentOS7中的安装与配置
自从2014年3月19日甲骨文公司发布Java 8.0的正式版以来,面向对象的Java语言不仅朝着一个更好的方向发展,而且吸取了当前比较流行的函数式编程的特性——Java 8.0加入了函数式编程的特点 ...