poj2528 Mayor's posters【线段树】
The citizens of Bytetown, AB, could not stand that the candidates in the mayoral election campaign have been placing their electoral posters at all places at their whim. The city council has finally decided to build an electoral wall for placing the posters and introduce the following rules:
- Every candidate can place exactly one poster on the wall.
- All posters are of the same height equal to the height of the wall; the width of a poster can be any integer number of bytes (byte is the unit of length in Bytetown).
- The wall is divided into segments and the width of each segment is one byte.
- Each poster must completely cover a contiguous number of wall segments.
They have built a wall 10000000 bytes long (such that there is enough place for all candidates). When the electoral campaign was restarted, the candidates were placing their posters on the wall and their posters differed widely in width. Moreover, the candidates started placing their posters on wall segments already occupied by other posters. Everyone in Bytetown was curious whose posters will be visible (entirely or in part) on the last day before elections.
Your task is to find the number of visible posters when all the posters are placed given the information about posters' size, their place and order of placement on the electoral wall.
Input
The first line of input contains a number c giving the number of cases that follow. The first line of data for a single case contains number 1 <= n <= 10000. The subsequent n lines describe the posters in the order in which they were placed. The i-th line among the n lines contains two integer numbers l i and ri which are the number of the wall segment occupied by the left end and the right end of the i-th poster, respectively. We know that for each 1 <= i <= n, 1 <= l i <= ri <= 10000000. After the i-th poster is placed, it entirely covers all wall segments numbered l i, l i+1 ,... , ri.
Output
For each input data set print the number of visible posters after all the posters are placed.
The picture below illustrates the case of the sample input.
Sample Input
1
5
1 4
2 6
8 10
3 4
7 10
Sample Output
4
最开始觉得和zoj1610 count colors应该是一个模板
但是交了以后发现MLE
数据范围太大 没办法直接用数组 所以要离散化
第一次用到离散化 学了个新内容 代码是借鉴了题解
eg 范围[1,6] [1.7] [2,10] [8 18] 将各点排序
1 1 2 6 7 8 10 18 离散后对应的坐标为
1 2 3 4 5 6 7 再根据原来的点把它们对应起来,则离散后坐标为
[1,3] [1,4] [2,6] [5,7]
离散化代码
for(int i = 0; i < n * 2; i += 2){
//int a, b;
scanf("%d%d",&post[i].x,&post[i + 1].x);
post[i].id = post[i + 1].id = i;
}
sort(post, post + 2 * n, cmp1);
int tot = 0, pre = 0;
for(int i = 0; i < 2 * n; i++){
if(post[i].x == pre)
post[i].x = tot;
else{
pre = post[i].x;
post[i].x = ++tot;
}
}
从后往前贴 能保证已经能看见的poster里总能有最后的一部分不会被遮住
如果发现这段区域已经被完全覆盖了就返回
完整代码
#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<iostream>
#include<limits>
#include<stack>
#include<queue>
#include<cmath>
#define inf 1000005
//Ïß¶ÎÊ÷DÌâ
//http://blog.csdn.net/dt2131/article/details/52919953
//http://www.cnblogs.com/jackge/archive/2013/04/25/3041637.html
using namespace std;
const int maxn = 100010;
int c, n,flag;
//int tree[maxn << 2], dis[maxn];
bool vis[maxn];
struct node{
int id, x;
}post[maxn << 2];
struct Tree{
int l, r;
bool vis;
}tree[maxn << 2];
void build(int L, int R, int rt)
{
tree[rt].l = L;
tree[rt].r = R;
tree[rt].vis = 0;
if(tree[rt].l == tree[rt].r)
return;
int mid = (L + R) / 2;
build(L, mid, rt * 2);
build(mid + 1, R, rt * 2 + 1);
}
void pushup(int rt)
{
tree[rt].vis = tree[2 * rt].vis && tree[2 * rt + 1].vis;
}
/*void pushdown(int rt)
{
if(tree[rt] != -1){
tree[2 * rt] = tree[2 * rt + 1] = tree[rt];
tree[rt] = -1;
}
}
void update(int a, int b, int data, int l, int r, int rt)
{
if(a <= l && b >= r){
tree[rt] = data;
return;
}
if(tree[rt] == data)
return;
pushdown(rt);
int mid = (l + r) / 2;
if(a <= mid)
update(a, b, data, l, mid, 2 * rt);
if(b > mid)
update(a, b, data, mid + 1, r, 2 * rt + 1);
}*/
/*void query(int l, int r, int rt)
{
if(tree[rt] != -1){
for(int i = l; i <= r; i++){
dis[i] = tree[rt];
}
return;
}
if(l != r && tree[rt] == -1){
int mid = (l + r) / 2;
query(l, mid, 2 * rt);
query(mid + 1, r, 2 * rt + 1);
}
}
*/
void query(int L, int R, int rt)
{
if(tree[rt].vis)
return;
if(tree[rt].l == L && tree[rt].r == R)
{
tree[rt].vis = 1;
flag = 1;
return;
}
int mid = (tree[rt].l + tree[rt].r) / 2;
if(R <= mid)
query(L, R, 2 * rt);
else if(L >= mid + 1)
query(L, R, 2 * rt + 1);
else{
query(L, mid, 2 * rt);
query(mid + 1, R, 2 * rt + 1);
}
pushup(rt);
}
bool cmp1(node a, node b)
{
return a.x < b.x;
}
bool cmp2(node a, node b)
{
if(a.id == b.id)
return a.x < b.x;
return a.id > b.id;
}
int main()
{
scanf("%d",&c);
while(c--){
scanf("%d",&n);
//memset(tree, -1, sizeof(tree));
//memset(dis, -1, sizeof(dis));
//int k = 1;
for(int i = 0; i < n * 2; i += 2){
//int a, b;
scanf("%d%d",&post[i].x,&post[i + 1].x);
post[i].id = post[i + 1].id = i;
}
sort(post, post + 2 * n, cmp1);
int tot = 0, pre = 0;
for(int i = 0; i < 2 * n; i++){
if(post[i].x == pre)
post[i].x = tot;
else{
pre = post[i].x;
post[i].x = ++tot;
}
}
build(1, 2 * n, 1);
sort(post, post + 2 * n, cmp2);
int ans = 0;
for(int i = 0; i < 2 * n; i += 2){
int l = post[i].x;
int r = post[i + 1].x;
flag = 0;
query(l, r, 1);
if(flag)
ans++;
}
/*memset(vis, 0, sizeof(vis));
int res = 0;
for(int i = 0; i < maxn;){
while(i < maxn && dis[i] == -1)
i++;
if(i >= maxn)
break;
int temp = dis[i];
if(!vis[temp]){
vis[temp] = true;
res++;
}
//res[temp]++;
while(i < maxn && dis[i] == temp)
i++;
}
/*int ans = 0;
for(int i = 0; i < maxn; i++){
ans += res[i];
}*/
printf("%d\n",ans);
}
return 0;
}
poj2528 Mayor's posters【线段树】的更多相关文章
- poj-----(2528)Mayor's posters(线段树区间更新及区间统计+离散化)
Mayor's posters Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 43507 Accepted: 12693 ...
- POJ2528 Mayor's posters —— 线段树染色 + 离散化
题目链接:https://vjudge.net/problem/POJ-2528 The citizens of Bytetown, AB, could not stand that the cand ...
- [poj2528] Mayor's posters (线段树+离散化)
线段树 + 离散化 Description The citizens of Bytetown, AB, could not stand that the candidates in the mayor ...
- poj2528 Mayor's posters(线段树之成段更新)
Mayor's posters Time Limit: 1000MSMemory Limit: 65536K Total Submissions: 37346Accepted: 10864 Descr ...
- POJ2528:Mayor's posters(线段树区间更新+离散化)
Description The citizens of Bytetown, AB, could not stand that the candidates in the mayoral electio ...
- poj2528 Mayor's posters(线段树区间修改+特殊离散化)
Description The citizens of Bytetown, AB, could not stand that the candidates in the mayoral electio ...
- poj2528 Mayor's posters(线段树区间覆盖)
Mayor's posters Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 50888 Accepted: 14737 ...
- POJ.2528 Mayor's posters (线段树 区间更新 区间查询 离散化)
POJ.2528 Mayor's posters (线段树 区间更新 区间查询 离散化) 题意分析 贴海报,新的海报能覆盖在旧的海报上面,最后贴完了,求问能看见几张海报. 最多有10000张海报,海报 ...
- Mayor's posters(线段树+离散化POJ2528)
Mayor's posters Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 51175 Accepted: 14820 Des ...
- POJ 2528 Mayor's posters(线段树+离散化)
Mayor's posters 转载自:http://blog.csdn.net/winddreams/article/details/38443761 [题目链接]Mayor's posters [ ...
随机推荐
- Java实现窗体动态加载磁盘文件
在使用图形界面操作系统时,当打开一个文件夹系统会自动列出该文件夹下的所有文件及子文件夹.本实例实现了类似的功能:首先让用户选择一个文件夹,程序会动态列出该文件夹下的所有文件:如果该文件是隐藏文件,就在 ...
- 基于net.tcp的WCF配置实例解析(转)
http://www.cnblogs.com/scy251147/archive/2012/11/23/2784902.html 原文 本文主要通过文件配置来讲解如何编写一个基于net.tcp的Win ...
- 高德地图api比例尺
20-10m-(19=<zoom<20) 19-10m-(19=<zoom<20) 18-25m-(18=<zoom<19) 17-50m-(17=<zoom ...
- Fiddler 抓取 Genymotion 数据包
对genymotion进行如下设置
- 标签a点击以后,5秒内禁止点击,5秒后激活
方法1:利用bootstrap里面的类disabled,禁止链接 <a href='javascript:onHref()' id="test">点击</a> ...
- SpringBoot Cmd运行Jar文件指定active文件的命令如下
SpringBoot Cmd运行Jar文件指定active文件的命令如下 SpringBoot 命令行指定配置文件运行 ================================ ©Copyri ...
- DokuWiki 开源wiki引擎程序
DokuWiki是一个开源wiki引擎程序,运行于PHP环境下.DokuWiki程序小巧而功能强大.灵活,适合中小团队和个人网站知识库的管理. 官网:https://www.dokuwiki.org/ ...
- iOS开发--NSDateFormatter
NSDate对象包含两个部分,日期(Date)和时间(Time).格式化的时间字符串主要也是针对日期和时间的 1.基础用法 NSDate* now = [NSDate date]; NSDateFor ...
- ubuntu11.10 64bit 编译android 4.0
前言: 据说google内部使用的的ubuntu版本始终是10.4, 而我一直使用的编译2.3Gingerbread的 11.04下补充安装uuid-dev和liblzo2-dev两个库就可以直接编译 ...
- Dictionary的应用
在C#中,Dictionary提供快速的基于兼职的元素查找.他的结构是这样的:Dictionary<[key], [value]> ,当你有很多元素的时候可以使用它.它包含在System. ...