1.确定Hadoop处于启动状态

[root@neusoft-master ~]# jps

23763 Jps
3220 SecondaryNameNode
3374 ResourceManager
2935 NameNode
3471 NodeManager
3030 DataNode

2. 在/usr/local/filecotent下新建hellodemo文件,并写入以下内容,以\t(tab键隔开)

[root@neusoft-master filecontent]# vi hellodemo
hello you
hello me

3.在linux中执行以下步骤:

3.1hdfs中创建data目录

[root@neusoft-master filecontent]# hadoop dfs -mkdir /data

3.2 将/usr/local/filecontent/hellodemo 上传到hdfs的data目录中

[root@neusoft-master filecontent]# hadoop dfs -put hellodemo /data

3.3查看data目录下的内容

[root@neusoft-master filecontent]# hadoop dfs -ls /data
DEPRECATED: Use of this script to execute hdfs command is deprecated.
Instead use the hdfs command for it.

17/02/01 00:39:44 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
Found 1 items
-rw-r--r-- 3 root supergroup 19 2017-02-01 00:39 /data/hellodemo

3.4查看hellodemo的文件内容

[root@neusoft-master filecontent]# hadoop dfs -text /data/hellodemo

4. 编写WordCountTest.java并打包成jar文件

 package Mapreduce;

 import java.io.IOException;

 import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat; /**
* 假设有个目录结构
* /目录1
* /目录1/hello.txt
* /目录1/目录2/hello.txt
*
* 问:统计/目录1下面所有的文件中的单词技术
*
*/
public class WordCountTest {
public static void main(String[] args) throws Exception {
//2将自定义的MyMapper和MyReducer组装在一起
Configuration conf=new Configuration();
String jobName=WordCountTest.class.getSimpleName();
//1首先寫job,知道需要conf和jobname在去創建即可
Job job = Job.getInstance(conf, jobName); //*13最后,如果要打包运行改程序,则需要调用如下行
job.setJarByClass(WordCountTest.class); //3读取HDFS內容:FileInputFormat在mapreduce.lib包下
FileInputFormat.setInputPaths(job, new Path("hdfs://neusoft-master:9000/data/hellodemo"));
//4指定解析<k1,v1>的类(谁来解析键值对)
job.setInputFormatClass(TextInputFormat.class);
//5指定自定义mapper类
job.setMapperClass(MyMapper.class);
//6指定map输出的key2的类型和value2的类型 <k2,v2>
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(LongWritable.class);
//7分区(默认1个),排序,分组,规约 采用 默认 //接下来采用reduce步骤
//8指定自定义的reduce类
job.setReducerClass(MyReducer.class);
//9指定输出的<k3,v3>类型
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(LongWritable.class);
//10指定输出<K3,V3>的类
job.setOutputFormatClass(TextOutputFormat.class);
//11指定输出路径
FileOutputFormat.setOutputPath(job, new Path("hdfs://neusoft-master:9000/out1")); //12写的mapreduce程序要交给resource manager运行
job.waitForCompletion(true);
}
private static class MyMapper extends Mapper<LongWritable, Text, Text,LongWritable>{
Text k2 = new Text();
LongWritable v2 = new LongWritable();
@Override
protected void map(LongWritable key, Text value,//三个参数
Mapper<LongWritable, Text, Text, LongWritable>.Context context)
throws IOException, InterruptedException {
String line = value.toString();
String[] splited = line.split("\t");//因为split方法属于string字符的方法,首先应该转化为string类型在使用
for (String word : splited) {
//word表示每一行中每个单词
//对K2和V2赋值
k2.set(word);
v2.set(1L);
context.write(k2, v2);
}
}
}
private static class MyReducer extends Reducer<Text, LongWritable, Text, LongWritable> {
LongWritable v3 = new LongWritable();
@Override //k2表示单词,v2s表示不同单词出现的次数,需要对v2s进行迭代
protected void reduce(Text k2, Iterable<LongWritable> v2s, //三个参数
Reducer<Text, LongWritable, Text, LongWritable>.Context context)
throws IOException, InterruptedException {
long sum =0;
for (LongWritable v2 : v2s) {
//LongWritable本身是hadoop类型,sum是java类型
//首先将LongWritable转化为字符串,利用get方法
sum+=v2.get();
}
v3.set(sum);
//将k2,v3写出去
context.write(k2, v3);
}
}
}

WordCountTest.java

//1首先寫job,知道需要conf和jobname在去創建即可
Job job = Job.getInstance(conf, jobName);

//2将自定义的MyMapper和MyReducer组装在一起
Configuration conf=new Configuration();
String jobName=WordCountTest.class.getSimpleName();

FileInputFormat.setInputPaths(job, new Path("hdfs://neusoft-master:9000/data/hellodemo"));
//4指定解析<k1,v1>的类(谁来解析键值对)
job.setInputFormatClass(TextInputFormat.class);
//5指定自定义mapper类
job.setMapperClass(MyMapper.class);
//6指定map输出的key2的类型和value2的类型 <k2,v2>
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(LongWritable.class);
//7分区(默认1个),排序,分组,规约 采用 默认

//接下来采用reduce步骤
//8指定自定义的reduce类
job.setReducerClass(MyReducer.class);
//9指定输出的<k3,v3>类型
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(LongWritable.class);
//10指定输出<K3,V3>的类
job.setOutputFormatClass(TextOutputFormat.class);
//11指定输出路径
FileOutputFormat.setOutputPath(job, new Path("hdfs://neusoft-master:9000/out1"));

//12写的mapreduce程序要交给resource manager运行
job.waitForCompletion(true);

//*13最后,如果要打包运行改程序,则需要调用如下行
job.setJarByClass(WordCountTest.class);

mapper任务

private static class MyMapper extends Mapper<LongWritable, Text, Text,LongWritable>{
Text k2 = new Text();
LongWritable v2 = new LongWritable();
@Override
protected void map(LongWritable key, Text value,//三个参数
Mapper<LongWritable, Text, Text, LongWritable>.Context context)
throws IOException, InterruptedException {
String line = value.toString();
String[] splited = line.split("\t");//因为split方法属于string字符的方法,首先应该转化为string类型在使用
for (String word : splited) {
//word表示每一行中每个单词
//对K2和V2赋值
k2.set(word);
v2.set(1L);
context.write(k2, v2);
}
}
}

Reducer任务

private static class MyReducer extends Reducer<Text, LongWritable, Text, LongWritable> {
LongWritable v3 = new LongWritable();
@Override //k2表示单词,v2s表示不同单词出现的次数,需要对v2s进行迭代
protected void reduce(Text k2, Iterable<LongWritable> v2s, //三个参数
Reducer<Text, LongWritable, Text, LongWritable>.Context context)
throws IOException, InterruptedException {
long sum =0;
for (LongWritable v2 : v2s) {
//LongWritable本身是hadoop类型,sum是java类型
//首先将LongWritable转化为字符串,利用get方法
sum+=v2.get();
}
v3.set(sum);
//将k2,v3写出去
context.write(k2, v3);
}
}
}

5.打成jar包并指定主类,在linux中运行

[root@neusoft-master filecontent]# hadoop jar hellodemo.jar
17/02/01 01:00:48 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
17/02/01 01:00:48 INFO client.RMProxy: Connecting to ResourceManager at neusoft-master/192.168.191.130:8080
17/02/01 01:00:49 WARN mapreduce.JobResourceUploader: Hadoop command-line option parsing not performed. Implement the Tool interface and execute your application with ToolRunner to remedy this.
17/02/01 01:00:49 INFO input.FileInputFormat: Total input paths to process : 1
17/02/01 01:00:49 INFO mapreduce.JobSubmitter: number of splits:1
17/02/01 01:00:49 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1485556908836_0003
17/02/01 01:00:49 INFO impl.YarnClientImpl: Submitted application application_1485556908836_0003
17/02/01 01:00:49 INFO mapreduce.Job: The url to track the job: http://neusoft-master:8088/proxy/application_1485556908836_0003/
17/02/01 01:00:49 INFO mapreduce.Job: Running job: job_1485556908836_0003
17/02/01 01:00:56 INFO mapreduce.Job: Job job_1485556908836_0003 running in uber mode : false
17/02/01 01:00:56 INFO mapreduce.Job: map 0% reduce 0%
17/02/01 01:01:00 INFO mapreduce.Job: map 100% reduce 0%
17/02/01 01:01:05 INFO mapreduce.Job: map 100% reduce 100%
17/02/01 01:01:06 INFO mapreduce.Job: Job job_1485556908836_0003 completed successfully
17/02/01 01:01:06 INFO mapreduce.Job: Counters: 49
File System Counters
FILE: Number of bytes read=65
FILE: Number of bytes written=220211
FILE: Number of read operations=0
FILE: Number of large read operations=0
FILE: Number of write operations=0
HDFS: Number of bytes read=125
HDFS: Number of bytes written=19
HDFS: Number of read operations=6
HDFS: Number of large read operations=0
HDFS: Number of write operations=2
Job Counters
Launched map tasks=1
Launched reduce tasks=1
Data-local map tasks=1
Total time spent by all maps in occupied slots (ms)=2753
Total time spent by all reduces in occupied slots (ms)=3020
Total time spent by all map tasks (ms)=2753
Total time spent by all reduce tasks (ms)=3020
Total vcore-seconds taken by all map tasks=2753
Total vcore-seconds taken by all reduce tasks=3020
Total megabyte-seconds taken by all map tasks=2819072
Total megabyte-seconds taken by all reduce tasks=3092480
Map-Reduce Framework
Map input records=2
Map output records=4
Map output bytes=51
Map output materialized bytes=65
Input split bytes=106
Combine input records=0
Combine output records=0
Reduce input groups=3
Reduce shuffle bytes=65
Reduce input records=4
Reduce output records=3
Spilled Records=8
Shuffled Maps =1
Failed Shuffles=0
Merged Map outputs=1
GC time elapsed (ms)=40
CPU time spent (ms)=1550
Physical memory (bytes) snapshot=448503808
Virtual memory (bytes) snapshot=3118854144
Total committed heap usage (bytes)=319291392
Shuffle Errors
BAD_ID=0
CONNECTION=0
IO_ERROR=0
WRONG_LENGTH=0
WRONG_MAP=0
WRONG_REDUCE=0
File Input Format Counters
Bytes Read=19
File Output Format Counters
Bytes Written=19

*********************

6.查看输出文件内容

[root@neusoft-master filecontent]# hadoop dfs -ls /out1
DEPRECATED: Use of this script to execute hdfs command is deprecated.
Instead use the hdfs command for it.

17/02/01 01:01:45 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
Found 2 items
-rw-r--r-- 3 root supergroup 0 2017-02-01 01:01 /out1/_SUCCESS
-rw-r--r-- 3 root supergroup 19 2017-02-01 01:01 /out1/part-r-00000

[root@neusoft-master filecontent]# hadoop dfs -text /out1/part-r-00000
DEPRECATED: Use of this script to execute hdfs command is deprecated.
Instead use the hdfs command for it.

17/02/01 01:03:19 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
hello 2
me 1
you 1

7.结果分析

     根据上传到Hdfs中得文件和所得结果分析,所得结果是正确无误的。

注意:主函数中得方法有一些步骤是可省的,需要着重注意

    其中第6、8、10步均可省略

public static void main(String[] args) throws Exception {
//必须要传递的是自定的mapper和reducer的类,输入输出的路径必须指定,输出的类型<k3,v3>必须指定
//2将自定义的MyMapper和MyReducer组装在一起
Configuration conf=new Configuration();
String jobName=WordCountTest.class.getSimpleName();
//1首先寫job,知道需要conf和jobname在去創建即可
Job job = Job.getInstance(conf, jobName);

//*13最后,如果要打包运行改程序,则需要调用如下行
job.setJarByClass(WordCountTest.class);

//3读取HDFS內容:FileInputFormat在mapreduce.lib包下
FileInputFormat.setInputPaths(job, new Path("hdfs://neusoft-master:9000/data/hellodemo"));
//4指定解析<k1,v1>的类(谁来解析键值对)
//*指定解析的类可以省略不写,因为设置解析类默认的就是TextInputFormat.class
job.setInputFormatClass(TextInputFormat.class);
//5指定自定义mapper类
job.setMapperClass(MyMapper.class);
//6指定map输出的key2的类型和value2的类型 <k2,v2>
//*下面两步可以省略,当<k3,v3>和<k2,v2>类型一致的时候,<k2,v2>类型可以不指定
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(LongWritable.class);
//7分区(默认1个),排序,分组,规约 采用 默认

//接下来采用reduce步骤
//8指定自定义的reduce类
job.setReducerClass(MyReducer.class);
//9指定输出的<k3,v3>类型
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(LongWritable.class);
//10指定输出<K3,V3>的类
//*下面这一步可以省
job.setOutputFormatClass(TextOutputFormat.class);
//11指定输出路径
FileOutputFormat.setOutputPath(job, new Path("hdfs://neusoft-master:9000/out1"));

//12写的mapreduce程序要交给resource manager运行
job.waitForCompletion(true);
}

END

Mapreduce实验一:WordCountTest的更多相关文章

  1. 实验六 MapReduce实验:二次排序

    实验指导: 6.1 实验目的基于MapReduce思想,编写SecondarySort程序. 6.2 实验要求要能理解MapReduce编程思想,会编写MapReduce版本二次排序程序,然后将其执行 ...

  2. mapreduce实验

    代码: public class WordCount { public static void main(String[] args) throws IOException, ClassNotFoun ...

  3. Mit6.824 Lab1-MapReduce

    前言 Mit6.824 是我在学习一些分布式系统方面的知识的时候偶然看到的,然后就开始尝试跟课.不得不说,国外的课程难度是真的大,一周的时间居然要学一门 Go 语言,然后还要读论文,进而做MapRed ...

  4. 实验6:Mapreduce实例——WordCount

          实验目的1.准确理解Mapreduce的设计原理2.熟练掌握WordCount程序代码编写3.学会自己编写WordCount程序进行词频统计实验原理MapReduce采用的是“分而治之”的 ...

  5. 大型数据库技术实验六 实验6:Mapreduce实例——WordCount

    现有某电商网站用户对商品的收藏数据,记录了用户收藏的商品id以及收藏日期,名为buyer_favorite1. buyer_favorite1包含:买家id,商品id,收藏日期这三个字段,数据以“\t ...

  6. Hadoop大实验——MapReduce的操作

    日期:2019.10.30 博客期:114 星期三 实验6:Mapreduce实例——WordCount   实验说明: 1.          本次实验是第六次上机,属于验证性实验.实验报告上交截止 ...

  7. 云计算——实验一 HDFS与MAPREDUCE操作

    1.虚拟机集群搭建部署hadoop 利用VMware.centOS-7.Xshell(secureCrt)等软件搭建集群部署hadoop 远程连接工具使用Xshell: HDFS文件操作 2.1 HD ...

  8. mapreduce课上实验

    今天我们课上做了一个关于数据清洗的实验,具体实验内容如下: 1.数据清洗:按照进行数据清洗,并将清洗后的数据导入hive数据库中: 2.数据处理: ·统计最受欢迎的视频/文章的Top10访问次数 (v ...

  9. Hadoop学习笔记—11.MapReduce中的排序和分组

    一.写在之前的 1.1 回顾Map阶段四大步骤 首先,我们回顾一下在MapReduce中,排序和分组在哪里被执行: 从上图中可以清楚地看出,在Step1.4也就是第四步中,需要对不同分区中的数据进行排 ...

随机推荐

  1. VSCode------.net core2.0发布后配置到Window Service 2008R2报500错误

    如图: 解决方法: 出现这个错误是因为 IIS 采用了更安全的 web.config 管理机制,默认情况下会锁住配置项不允许更改. 要取消锁定可以运行命令行 %windir%\system32\ine ...

  2. 8 -- 深入使用Spring -- 4...4 Spring 的 AOP 支持

    8.4.4 Spring 的AOP 支持 Spring中的AOP代理由Spring的IoC容器负责生成.管理,器依赖关系也由IoC容器负责管理.因此,AOP代理可以直接使用容器中的其他Bean实例作为 ...

  3. SaltStack 批量安装软件

    这里我们用 SaltStack 服务端对多台客户端远程批量安装 httpd,步骤如下: [root@localhost ~]$ vim /etc/salt/master # 编辑配置文件,打开base ...

  4. android新建的项目界面上没有显示怎么办?

    看log也没有说明具体情况? 一翻折腾在清单文件里加了权限就好了!!!

  5. Spring系列之访问数据库

    一.概述 Spring的数据访问层是以统一的数据访问异常层体系为核心,结合JDBC API的最佳实践和统一集成各种ORM方案,完成Java平台的数据访问. 二.JDBC API的最佳实践 Spring ...

  6. 【正则表达式1】C++11正则表达式

    https://www.cnblogs.com/pukaifei/p/5546968.html [正则表达式1]C++11正则表达式   头文件 #include <regex> rege ...

  7. Matlab练习——矩阵和数组的操作

    题目来自:<战胜MATLAB必做练习50道> 题目有更改,改成了我想写的样子. 1. 创建一个3×3矩阵,并将其扩充为4×5矩阵 clear; clc; mat1 = ones(,) ma ...

  8. linux个性化定制登录信息

    1./etc/motd /etc/motd即messageoftoday(布告栏信息),每次用户登录时,/etc/motd文件的内容会显示在用户的终端.系统管理员可以在文件中编辑系统活动消息,例如:管 ...

  9. Git学习之Git 暂存区

    ============================= 修改文件后是否可以直接提交 ============================ (1) 向文件中追加一行内容  $ echo &quo ...

  10. 题目1198:a+b(高精度计算,好像有点问题)

    题目链接:http://ac.jobdu.com/problem.php?pid=1198 详解链接:https://github.com/zpfbuaa/JobduInCPlusPlus 参考代码: ...