运行结果

统计每个学员的总成绩

这个是索引库使用通配符

优先在本地查询

只在本地节点中查询

只在指定id的节点里面进行查询

查询指定分片的数据

参考代码ESTestAggregation.java

package com.dajiangtai.djt_spider.elasticsearch;

import java.net.InetAddress;
import java.net.UnknownHostException;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.concurrent.TimeUnit; import org.codehaus.jackson.map.ObjectMapper;
import org.elasticsearch.action.bulk.BackoffPolicy;
import org.elasticsearch.action.bulk.BulkProcessor;
import org.elasticsearch.action.bulk.BulkRequest;
import org.elasticsearch.action.bulk.BulkResponse;
import org.elasticsearch.action.index.IndexRequest;
import org.elasticsearch.action.index.IndexResponse;
import org.elasticsearch.action.search.SearchRequestBuilder;
import org.elasticsearch.action.search.SearchResponse;
import org.elasticsearch.client.transport.TransportClient;
import org.elasticsearch.common.settings.Settings;
import org.elasticsearch.common.transport.InetSocketTransportAddress;
import org.elasticsearch.common.unit.ByteSizeUnit;
import org.elasticsearch.common.unit.ByteSizeValue;
import org.elasticsearch.common.unit.TimeValue;
import org.elasticsearch.index.query.QueryBuilders;
import org.elasticsearch.search.SearchHit;
import org.elasticsearch.search.SearchHits;
import org.elasticsearch.search.aggregations.AggregationBuilders;
import org.elasticsearch.search.aggregations.bucket.terms.Terms;
import org.elasticsearch.search.aggregations.bucket.terms.Terms.Bucket;
import org.elasticsearch.search.aggregations.metrics.sum.Sum;
import org.junit.Before;
import org.junit.Test;
/**
* Aggregation 操作
*
* @author 大讲台
*
*/
public class ESTestAggregation {
private TransportClient client; @Before
public void test0() throws UnknownHostException { // 开启client.transport.sniff功能,探测集群所有节点
Settings settings = Settings.settingsBuilder()
.put("cluster.name", "escluster")
.put("client.transport.sniff", true).build();
// on startup
// 获取TransportClient
client = TransportClient
.builder()
.settings(settings)
.build()
.addTransportAddress(
new InetSocketTransportAddress(InetAddress
.getByName("master"), 9300))
.addTransportAddress(
new InetSocketTransportAddress(InetAddress
.getByName("slave1"), 9300))
.addTransportAddress(
new InetSocketTransportAddress(InetAddress
.getByName("slave2"), 9300));
}
/**
* Aggregation 分组统计相同年龄学员个数
* @throws Exception
*/
@Test
public void test1() throws Exception {
SearchRequestBuilder builder = client.prepareSearch("djt1");
builder.setTypes("user")
.setQuery(QueryBuilders.matchAllQuery())
//按年龄分组聚合统计
.addAggregation(AggregationBuilders.terms("by_age").field("age").size(0))
; SearchResponse searchResponse = builder.get();
//获取分组信息
Terms terms = searchResponse.getAggregations().get("by_age");
List<Bucket> buckets = terms.getBuckets();
for (Bucket bucket : buckets) {
System.out.println(bucket.getKey()+":"+bucket.getDocCount());
}
} /**
* Aggregation 分组统计每个学员的总成绩
* @throws Exception
*/
@Test
public void test2() throws Exception {
SearchRequestBuilder builder = client.prepareSearch("djt2");
builder.setTypes("user")
.setQuery(QueryBuilders.matchAllQuery())
//按姓名分组聚合统计
.addAggregation(AggregationBuilders.terms("by_name")
.field("name")
.subAggregation(AggregationBuilders.sum("sum_score")
.field("score"))
.size(0))
;
SearchResponse searchResponse = builder.get();
//获取分组信息
Terms terms = searchResponse.getAggregations().get("by_name");
List<Bucket> buckets = terms.getBuckets();
for (Bucket bucket : buckets) {
Sum sum = bucket.getAggregations().get("sum_score");
System.out.println(bucket.getKey()+":"+sum.getValue());
}
} /**
* 支持多索引和多类型查询
* @throws Exception
*/
@Test
public void test3() throws Exception {
SearchRequestBuilder builder
= client//.prepareSearch("djt1","djt2")//可以指定多个索引库
.prepareSearch("djt*")//索引库可以使用通配符
.setTypes("user");//支持多个类型,但不支持通配符 SearchResponse searchResponse = builder.get(); SearchHits hits = searchResponse.getHits();
SearchHit[] hits2 = hits.getHits();
for (SearchHit searchHit : hits2) {
System.out.println(searchHit.getSourceAsString());
}
}
/**
* 分片查询方式
* @throws Exception
*/
@Test
public void test4() throws Exception {
SearchRequestBuilder
builder = client.prepareSearch("djt3")
.setTypes("user")
//.setPreference("_local")
//.setPreference("_only_local")
//.setPreference("_primary")
//.setPreference("_replica")
//.setPreference("_primary_first")
//.setPreference("_replica_first")
//.setPreference("_only_node:crKxtA2fRTG1UZdPN8QtaA")
//.setPreference("_prefer_node:nJL_MqcsSle6gY7iujoAlw")
.setPreference("_shards:3")
;
SearchResponse searchResponse = builder.get();
SearchHits hits = searchResponse.getHits();
SearchHit[] hits2 = hits.getHits();
for (SearchHit searchHit : hits2) {
System.out.println(searchHit.getSourceAsString());
}
}
/**
* 极速查询:通过路由插入数据(同一类别数据在一个分片)
* @throws Exception
*/
@Test
public void test5() throws Exception {
Acount acount = new Acount("13602546655","tom1","male",16);
Acount acount2 = new Acount("13602546655","tom2","male",17);
Acount acount3 = new Acount("13602546655","tom3","male",18);
Acount acount4 = new Acount("18903762536","john1","male",28);
Acount acount5 = new Acount("18903762536","john2","male",29);
Acount acount6 = new Acount("18903762536","john3","male",30);
List<Acount> list = new ArrayList<Acount>();
list.add(acount);
list.add(acount2);
list.add(acount3);
list.add(acount4);
list.add(acount5);
list.add(acount6); BulkProcessor bulkProcessor = BulkProcessor.builder(
client,
new BulkProcessor.Listener() { public void beforeBulk(long executionId, BulkRequest request) {
// TODO Auto-generated method stub
System.out.println(request.numberOfActions());
} public void afterBulk(long executionId, BulkRequest request,
Throwable failure) {
// TODO Auto-generated method stub
System.out.println(failure.getMessage());
} public void afterBulk(long executionId, BulkRequest request,
BulkResponse response) {
// TODO Auto-generated method stub
System.out.println(response.hasFailures());
}
})
.setBulkActions(1000) // 每个批次的最大数量
.setBulkSize(new ByteSizeValue(1, ByteSizeUnit.GB))// 每个批次的最大字节数
.setFlushInterval(TimeValue.timeValueSeconds(5))// 每批提交时间间隔
.setConcurrentRequests(1) //设置多少个并发处理线程
//可以允许用户自定义当一个或者多个bulk请求失败后,该执行如何操作
.setBackoffPolicy(
BackoffPolicy.exponentialBackoff(TimeValue.timeValueMillis(100), 3))
.build();
for (Acount a : list) {
ObjectMapper mapper = new ObjectMapper(); byte[] json = mapper.writeValueAsBytes(a);
bulkProcessor.add(new IndexRequest("djt3", "user")
.routing(a.getPhone().substring(0, 3))
.source(json));
} //阻塞至所有的请求线程处理完毕后,断开连接资源
bulkProcessor.awaitClose(3, TimeUnit.MINUTES);
client.close();
}
/**
* 极速查询:通过路由极速查询,也可以通过分片shards查询演示
*
* @throws Exception
*/
@Test
public void test6() throws Exception {
SearchRequestBuilder builder = client.prepareSearch("djt3")//可以指定多个索引库
.setTypes("user");//支持多个类型,但不支持通配符
builder.setQuery(QueryBuilders.matchAllQuery())
.setRouting("13602546655".substring(0, 3))
//.setRouting("18903762536".substring(0, 3))
;
SearchResponse searchResponse = builder.get(); SearchHits hits = searchResponse.getHits();
SearchHit[] hits2 = hits.getHits();
for (SearchHit searchHit : hits2) {
System.out.println(searchHit.getSourceAsString());
}
}
}

elastisSearch-aggregations的更多相关文章

  1. hive的Query和Insert,Group by,Aggregations(聚合)操作

    1.Query (1)分区查询 在查询的过程中,采用那个分区来查询是通过系统自动的决定,但是必须是在分区列上基于where子查询. SELECT page_views.* FROM page_view ...

  2. ElasticSearch 的 聚合(Aggregations)

    Elasticsearch有一个功能叫做 聚合(aggregations) ,它允许你在数据上生成复杂的分析统计.它很像SQL中的 GROUP BY 但是功能更强大. Aggregations种类分为 ...

  3. aggregation 详解2(metrics aggregations)

    概述 权值聚合类型从需要聚合的文档中取一个值(value)来计算文档的相应权值(比如该值在这些文档中的max.sum等). 用于计算的值(value)可以是文档的字段(field),也可以是脚本(sc ...

  4. aggregation 详解4(pipeline aggregations)

    概述 管道聚合处理的对象是其它聚合的输出(桶或者桶的某些权值),而不是直接针对文档. 管道聚合的作用是为输出增加一些有用信息. 管道聚合大致分为两类: parent 此类聚合的"输入&quo ...

  5. aggregations 详解1(概述)

    aggregation分类 aggregations —— 聚合,提供了一种基于查询条件来对数据进行分桶.计算的方法.有点类似于 SQL 中的 group by 再加一些函数方法的操作. 聚合可以嵌套 ...

  6. Elasticsearch aggregations API

    聚合能力 Aggregation API 类似 SQL 中的 GROUP BY 语句,可以以某个字段来进行分组. Aggregation API 支持分级分组,多级的分组过程是由外到里的. Aggre ...

  7. Spark学习之路(十一)—— Spark SQL 聚合函数 Aggregations

    一.简单聚合 1.1 数据准备 // 需要导入spark sql内置的函数包 import org.apache.spark.sql.functions._ val spark = SparkSess ...

  8. Spark 系列(十一)—— Spark SQL 聚合函数 Aggregations

    一.简单聚合 1.1 数据准备 // 需要导入 spark sql 内置的函数包 import org.apache.spark.sql.functions._ val spark = SparkSe ...

  9. 使用 ElasticSearch Aggregations 进行统计分析(转)

    https://blog.csdn.net/cs729298/article/details/68926969 ElasticSearch 的特点随处可见:基于 Lucene 的分布式搜索引擎,友好的 ...

  10. Elasticsearch系列(二)--query、filter、aggregations

    本文基于ES6.4版本,我也是出于学习阶段,对学习内容做个记录,如果文中有错误,请指出. 实验数据: index:book type:novel mappings: { "mappings& ...

随机推荐

  1. Error: map 不是模板

    问题: 笔者在自定义的namespace中使用map的时候,出现如题所示的问题. Error: map 不是模板 解决 百思不得其解. 然后Google到一片CSDN博文的类似问题 vector不是模 ...

  2. ACM 常见词汇

    rectangular 美:  [rek'tæŋɡjələr] 英:  [rek'tæŋɡjʊlə(r)] adj. 矩形的:成直角的   grid 美:  [ɡrɪd] 英:  [ɡrɪd] n. ...

  3. 20分钟打造你的Bootstrap站点

    来源:http://www.w3cplus.com/css/twitter-bootstrap-tutorial.html 特别声明:此篇文章由白牙根据Leon Revill的英文文章原名<Tw ...

  4. POJ3276(遍历+区间修改)

    http://poj.org/problem?id=3276 题意:n(n<=5000)头牛站成线,有朝前有朝后的的,然后每次可以选择大小为k的区间里的牛全部转向,会有一个最小操作m次使得它们全 ...

  5. Linux下rsync命令使用总结

    一.rsync的概述 rsync是类unix系统下的数据镜像备份工具,从软件的命名上就可以看出来了——remote sync.rsync是Linux系统下的文件同步和数据传输工具,它采用“rsync” ...

  6. hangfire docker-compose 运行

    hangfire 是一款基于.net 的任务调度系统 docker-compose 文件 version: '3' services: hangfire: image: direktchark/han ...

  7. 命令行net time同步时间(内网)

    首先还是推荐大家使用Internet时间来同步自己计算机的时间,这样做主要是方便,就是设置一个ntp服务器,我推荐下面的三个ntp服务器地址. time.asia.apple.com //亲测有效 a ...

  8. RabbitMQ之监控

    RabbitMQ作为一个工业级的消息中间件,肯定是缺少不了监控的,RabbitMQ提供了WEB版的页面监控(访问地址:http://xxx.xxx.xxx.xxx:15672/,默认端口号是15672 ...

  9. 基于CentOS与VmwareStation10搭建Oracle11G RAC 64集群环境

    1.资源准备 最近,在VmwareStation 10虚拟机上,基于CentOS5.4安装Oracle 11g RAC,并把过程记录下来.刚开始时,是基于CentOS 6.4安装Oracle 11g ...

  10. sklearn的画图

    from sklearn.metrics import roc_curve fpr, tpr, thresholds=roc_curve(y_train_5, y_scores) fpr, tpr & ...