垒骰子

赌圣atm晚年迷恋上了垒骰子,就是把骰子一个垒在另一个上边,不能歪歪扭扭,要垒成方柱体。

经过长期观察,atm 发现了稳定骰子的奥秘:有些数字的面贴着会互相排斥!

我们先来规范一下骰子:1 的对面是 4,2 的对面是 5,3 的对面是 6。

假设有 m 组互斥现象,每组中的那两个数字的面紧贴在一起,骰子就不能稳定的垒起来。

atm想计算一下有多少种不同的可能的垒骰子方式。

两种垒骰子方式相同,当且仅当这两种方式中对应高度的骰子的对应数字的朝向都相同。

由于方案数可能过多,请输出模 10^9 + 7 的结果。

不要小看了 atm 的骰子数量哦~

「输入格式」

第一行两个整数 n m

n表示骰子数目

接下来 m 行,每行两个整数 a b ,表示 a 和 b 数字不能紧贴在一起。

「输出格式」

一行一个数,表示答案模 10^9 + 7 的结果。

「样例输入」

2 1

1 2

「样例输出」

544

「数据范围」

对于 30% 的数据:n <= 5

对于 60% 的数据:n <= 100

对于 100% 的数据:0 < n <= 10^9, m <= 36

资源约定:

峰值内存消耗 < 256M

CPU消耗 < 2000ms

请严格按要求输出,不要画蛇添足地打印类似:“请您输入...” 的多余内容。

所有代码放在同一个源文件中,调试通过后,拷贝提交该源码。

注意: main函数需要返回0

注意: 只使用ANSI C/ANSI C++ 标准,不要调用依赖于编译环境或操作系统的特殊函数。

注意: 所有依赖的函数必须明确地在源文件中 #include , 不能通过工程设置而省略常用头文件。

提交时,注意选择所期望的编译器类型。

思路一:动态规划DP + 滚动数组

用动态规划来解. Dp[ i ][ j ]表示高度为 i , 顶面点数为 j 的方案数, 那么Dp[ i ][ j ] 就等于 i-1 高度时所有与j的反面无冲突的方案数累加. 最后的总方案数还要乘以(4^i), 因为每一个骰子可以4面转嘛. 由于每一层的规划只与前一层有关, 所以可以采用滚动数组, 不然内存会超标...直接看代码吧!

代码一:

#include <iostream>
using namespace std; // ...冲突记录: Compact[i][j]=false代表点数为i的面与点数为j的面存在冲突
bool Compact[7][7]; // ...Parner[i]=j代表 点数为i的面 的对立面点数为j
const int Parner[7]={ 0,4,5,6,1,2,3 };
const long long MOD = 1000000007; int main(int argc, char** argv)
{
long long N; // 骰子高度
int M; // 冲突组数
int s1,s2;
cin >> N >> M;
//初始化骰子没有冲突
for( int i = 0; i < 7; ++i)
for( int j = 0; j < 7;++j)
Compact[i][j]=true; //记录骰子存在的两面冲突
for( int i = 0; i < M; ++i ) {
cin >> s1 >> s2;
// ...点数为s1的面与点数为s2的面存在冲突
Compact[s1][s2] = Compact[s2][s1] = false;
}
long long dp[2][7]; // 滚动数组
long long C = 4;
int e = 0; // 滚动标志
for( int i = 1; i < 7; ++i )
dp[e][i] = 1; // dp[i][j]代表高度为i的,顶面点数为j的叠骰子方案数
// 在这里忽略每个骰子可以四面转向的情况, 把该情况留到最后乘上去就可以了
int j,k;
for( long long i = 2; i <= N; ++i ){
e = 1-e; // ...滚动处理 (0,1交替)
C = (C*4)%MOD; //计算4^n次方:每次循环乘以4
//下面两层循环表示:当前第i层顶面为j的方案数是下面一层6个面分别朝顶的方案数的总和
for( j = 1; j < 7; ++j ){
dp[e][j] = 0;
for( k = 1; k < 7; ++k)
if( Compact[ Parner[j] ][k] )
dp[e][j] += dp[1-e][k]; //dp[0][j] 与 dp[1][j]相邻递推关系
dp[e][j]%=MOD;
} }
int sum=0;
//计算总数:总数就等于最上面一层骰子所递推来的6个面方案综合
for( int i = 1; i < 7; ++i)
sum = (sum+dp[e][i])%MOD;
sum = (sum*C)%MOD;//骰子可以4个面转动 所以乘以4^n 就是乘以c
cout << sum;
return 0;
}

思路二:矩阵快速幂,转载 至:i逆天耗子丶

代码二:

#include<bits/stdc++.h>
#define ag(x) ((x)>3?(x)-3:(x)+3)
using namespace std;
typedef long long ll;
ll mod=1e9+7; struct matrix{
int n,m;
ll s[10][10];
}; //对A的初始化修改成 初始化为4,因为骰子四个面可以互相转动,需要最终乘以4或者初始化为4
matrix Aunit(matrix A){
for(int i=0;i<6;i++){
for(int j=0;j<6;j++){
A.s[i][j]=4;
}
}
return A;
} //返回一个单位矩阵
matrix unit(matrix A){
matrix re;
re.n=A.n;re.m=A.m;
for(int i=0;i<re.n;i++){
for(int j=0;j<re.m;j++){
if(i==j)re.s[i][j]=1;
else re.s[i][j]=0;
}
}
return re;
} //两个矩阵相乘
matrix mix(matrix A,matrix B){
matrix re;re.n=A.n;re.m=B.m;
for(int i=0;i<re.n;i++){
for(int j=0;j<re.m;j++){
re.s[i][j]=0;
for(int k=0;k<A.m;k++){
re.s[i][j]+=A.s[i][k]*B.s[k][j]%mod;
re.s[i][j]%=mod;
}
}
}
return re;
} //快速求 矩阵A的b次方
matrix dpow(matrix A,ll b){
matrix re;
re=unit(A);
while(b){
if(b&1)re=mix(re,A);
A=mix(A,A);
b>>=1;
}
return re;
} int main(){
ll n,m;
scanf("%lld%lld",&n,&m);
matrix A;A.n=6;A.m=6;
A=Aunit(A); //初始化矩阵A,表示冲突矩阵
int ip1,ip2;
//设置冲突矩阵的冲突面(两两对应)
while(m--){
scanf("%d%d",&ip1,&ip2);
A.s[ip2-1][ag(ip1)-1]=0;
A.s[ip1-1][ag(ip2)-1]=0;
} matrix p;p.n=1;p.m=6;
for(int j=0;j<6;j++)p.s[0][j]=4;
A=dpow(A,n-1); //求A矩阵的n-1次方
p=mix(p,A); //最后算A^n-1矩阵 * p矩阵,(p就是高度为1的第一个矩阵对应dp[1])
ll ans=0;
for(int j=0;j<6;j++)ans=(ans+p.s[0][j])%mod;
printf("%lld\n",ans);
return 0;
}

垒骰子|2015年蓝桥杯B组题解析第九题-fishers的更多相关文章

  1. 第十届蓝桥杯JavaB组省赛真题

    试题 A: 组队 本题总分:5 分 [问题描述] 作为篮球队教练,你需要从以下名单中选出 1 号位至 5 号位各一名球员, 组成球队的首发阵容. 每位球员担任 1 号位至 5 号位时的评分如下表所示. ...

  2. 2015年蓝桥杯B组C/C++决赛题解

    2015年第六届蓝桥杯B组C/C++决赛题解 点击查看2015年第六届蓝桥杯B组C/C++国赛题目(不含答案)     1.积分之迷 三重循环 枚举A,B,C的值,如果满足两个条件:3个A + 7个B ...

  3. 2015年蓝桥杯B组C/C++决赛题目

    2015年第六届蓝桥杯B组C/C++国赛题目 点击查看2015年第六届蓝桥杯B组C/C++国赛题解     1.积分之迷 小明开了个网上商店,卖风铃.共有3个品牌:A,B,C. 为了促销,每件商品都会 ...

  4. 第六届蓝桥杯JavaC组省赛真题

    解题代码部分来自网友,如果有不对的地方,欢迎各位大佬评论 题目1.隔行变色 隔行变色 Excel表的格子很多,为了避免把某行的数据和相邻行混淆,可以采用隔行变色的样式. 小明设计的样式为:第1行蓝色, ...

  5. 第六届蓝桥杯JavaB组省赛真题

    解题代码部分来自网友,如果有不对的地方,欢迎各位大佬评论 题目1.三角形面积 题目描述 如图1所示.图中的所有小方格面积都是1. 那么,图中的三角形面积应该是多少呢? 请填写三角形的面积.不要填写任何 ...

  6. 第六届蓝桥杯JavaA组省赛真题

    解题代码部分来自网友,如果有不对的地方,欢迎各位大佬评论 题目1.熊怪吃核桃 题目描述 森林里有一只熊怪,很爱吃核桃.不过它有个习惯,每次都把找到的核桃分成相等的两份,吃掉一份,留一份.如果不能等分, ...

  7. 第十届蓝桥杯JavaC组省赛真题

    试题 A: 求和 本题总分:5 分 [问题描述] 小明对数位中含有 2.0.1.9 的数字很感兴趣,在 1 到 40 中这样的数包 括 1.2.9.10 至 32.39 和 40,共 28 个,他们的 ...

  8. 第四届蓝桥杯JavaC组省赛真题

    解题代码部分来自网友,如果有不对的地方,欢迎各位大佬评论 题目1.猜年龄 题目描述 美国数学家维纳(N.Wiener)智力早熟,11岁就上了大学.他曾在1935~1936年应邀来中国清华大学讲学. 一 ...

  9. 第九届蓝桥杯JavaB组省赛真题

    解题代码部分来自网友,如果有不对的地方,欢迎各位大佬评论 题目1.第几天 题目描述 2000年的1月1日,是那一年的第1天. 那么,2000年的5月4日,是那一年的第几天? 注意:需要提交的是一个整数 ...

随机推荐

  1. Effective Java 目录

    <Effective Java>目录摘抄. 我知道这看起来很糟糕.当下,自己缺少实际操作,只能暂时摘抄下目录.随着,实践的增多,慢慢填充更多的示例. Chapter 2 Creating ...

  2. Jungle Roads---poj1251 hdu1301

    Description The Head Elder of the tropical island of Lagrishan has a problem. A burst of foreign aid ...

  3. sql server低版本到高版本还原,找不到备份集

    关键词:sql server低版本到高版本还原 故障问题,图中备份集(红色框线部分)没有数据,无法选择,导致无法还原 解决办法: [1] 低版本的备份到高版本的,用语句可以还原 注意事项: 低版本不一 ...

  4. iOS中Date和NString的相互转换

    必须知道的内容 G: 公元时代,例如AD公元     yy: 年的后2位     yyyy: 完整年     MM: 月,显示为1-12     MMM: 月,显示为英文月份简写,如 Jan      ...

  5. react-native run-android error: unknown host service

    D:\rnworkspace\Hello>react-native run-android JS server already running.Running D:\Android\sdk/pl ...

  6. vue中两种路由跳转拼接参数

    this.$router.push({name:"Home",query:{id:1,name:2}}) // 取到路由带过来的参数 let routerParams = this ...

  7. CSS :hover 选择器

    定义和用法 :hover 选择器用于选择鼠标指针浮动在上面的元素. 提示::hover 选择器可用于所有元素,不只是链接. 提示::link 选择器设置指向未被访问页面的链接的样式,:visited ...

  8. RNN实现字符级语言模型 - 恐龙岛(自己写RNN前向后向版本+keras版本)

    问题描述:样本为所有恐龙名字,为了构建字符级语言模型来生成新的名称,你的模型将学习不同的名称模式,并随机生成新的名字. 在这里你将学习到: 如何存储文本数据以便使用rnn进行处理. 如何合成数据,通过 ...

  9. jmeter 读取excel数据

    jmeter 读取excel数据使用的方法是使用Jmeter CSV Data Set Config参数化 但是将excel文件保存成csv格式后,jmeter读取后返回的数据总是出现乱码问题, 以下 ...

  10. Qt下QString转char*

    Qt下面,字符串都用QString,确实给开发者提供了方便,想想VC里面定义的各种变量类型,而且函数参数类型五花八门,经常需要今年新那个类型转换 Qt再使用第三方开源库时,由于库的类型基本上都是标准的 ...