[BZOJ2726][SDOI2012]任务安排(DP+凸壳二分)
2726: [SDOI2012]任务安排
Time Limit: 10 Sec Memory Limit: 128 MB
Submit: 1580 Solved: 466
[Submit][Status][Discuss]Description
机
器上有N个需要处理的任务,它们构成了一个序列。这些任务被标号为1到N,因此序列的排列为1,2,3...N。这N个任务被分成若干批,每批包含相邻的
若干任务。从时刻0开始,这些任务被分批加工,第i个任务单独完成所需的时间是Ti。在每批任务开始前,机器需要启动时间S,而完成这批任务所需的时间是
各个任务需要时间的总和。注意,同一批任务将在同一时刻完成。每个任务的费用是它的完成时刻乘以一个费用系数Fi。请确定一个分组方案,使得总费用最小。Input
第一行两个整数,N,S。接下来N行每行两个整数,Ti,Fi。Output
一个整数,为所求的答案。Sample Input
5 1
1 3
3 2
4 3
2 3
1 4Sample Output
153HINT
Source
复习了无数次CDQ分治和斜率优化,CDQ分治真的是博大精深。
但是,这道题,要个鬼CDQ分治啊!询问斜率不单调又不是插入点横坐标不单调!直接二分找切点不就好了!
说下思路吧,首先$O(n^3)$的DP谁都想得出来,考虑优化,f[i]记录前i个物品的信息。
但是问题来了,时间有后效性,前面的总时间对后面有影响,除非多设一维时间状态,而这样又是$n^3$的了,那么我们干脆就考虑前i个物品的总费用以及这i个物品给后面所有物品带来的费用之和。显然这样是满足无后效性,同时也满足最优子结构的。
设F[i]=f[i]前缀和,T[i]同理,则有DP方程:$dp[i]=min\{dp[j]+(T[i]-T[j]+S)(F[n]-F[j])\}$。这样复杂度就变为$O(n^2)$了。
熟练的选手一眼就知道这是斜率优化的形式,复杂度立刻降为$O(n)$。
但是!看Discuss知道这题的时间可以是负的!于是网上几乎所有的题解立刻全部变为CDQ分治版本,但其实并不需要,因为插入的点的横坐标仍然是单调的所以并不需要动态维护凸壳。询问斜率不单调的话直接二分找直线和凸壳的切点即可。这一点也是这题和货币兑换Cash的一个本质区别。
#include<cstdio>
#include<algorithm>
#define rep(i,l,r) for (int i=l; i<=r; i++)
typedef long long ll;
using namespace std; const int N=;
ll T[N],F[N],f[N];
int n,s,S,st,ed,q[N]; ll Y(int j){ return f[j]-F[n]*T[j]+F[j]*T[j]-F[j]*S; } void dp(){
st=ed=;
rep(i,,n){
int l=,r=ed-,ans=ed;
while (l<=r){
ll mid=(l+r)>>;
if (1ll*(F[q[mid+]]-F[q[mid]])*T[i]<=Y(q[mid+])-Y(q[mid])) ans=mid,r=mid-; else l=mid+;
}
int j=q[ans]; f[i]=f[j]+(F[n]-F[j])*(T[i]-T[j]+S);
while (st<ed && 1ll*(Y(q[ed])-Y(q[ed-]))*(F[i]-F[q[ed]])>=(Y(i)-Y(q[ed]))*(F[q[ed]]-F[q[ed-]])) ed--;
q[++ed]=i;
}
} int main(){
freopen("bzoj2726.in","r",stdin);
freopen("bzoj2726.out","w",stdout);
scanf("%d%d",&n,&S);
rep(i,,n) scanf("%lld%lld",&T[i],&F[i]),T[i]+=T[i-],F[i]+=F[i-];
dp(); printf("%lld\n",f[n]);
return ;
}
[BZOJ2726][SDOI2012]任务安排(DP+凸壳二分)的更多相关文章
- BZOJ_2726_[SDOI2012]任务安排_斜率优化+二分
BZOJ_2726_[SDOI2012]任务安排_斜率优化+二分 Description 机器上有N个需要处理的任务,它们构成了一个序列.这些任务被标号为1到N,因此序列的排列为1,2,3...N.这 ...
- 2018.09.05 bzoj2726: [SDOI2012]任务安排(斜率优化dp+二分)
传送门 跟Ti" role="presentation" style="position: relative;">TiTi为正数的时候差不多. ...
- BZOJ 2726: [SDOI2012]任务安排( dp + cdq分治 )
考虑每批任务对后面任务都有贡献, dp(i) = min( dp(j) + F(i) * (T(i) - T(j) + S) ) (i < j <= N) F, T均为后缀和. 与j有关 ...
- BZOJ.2726.[SDOI2012]任务安排(DP 斜率优化)
题目链接 数据范围在这:https://lydsy.com/JudgeOnline/wttl/thread.php?tid=613, 另外是\(n\leq3\times10^5\). 用\(t_i\) ...
- bzoj2402 陶陶的难题II 分数规划+树剖+线段树维护凸壳+二分
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=2402 题解 看上去很像分数规划的模型.于是就二分吧.令 \[ \begin{align*}\f ...
- BZOJ 2726: [SDOI2012]任务安排 斜率优化 + 凸壳二分 + 卡精
Code: #include<bits/stdc++.h> #define setIO(s) freopen(s".in","r",stdin) # ...
- [bzoj2726][SDOI2012]任务安排 ——斜率优化,动态规划,二分,代价提前计算
题解 本题的状态很容易设计: f[i] 为到第i个物件的最小代价. 但是方程不容易设计,因为有"后效性" 有两种方法解决: 1)倒过来设计动态规划,典型的,可以设计这样的方程: d ...
- BZOJ2726 [SDOI2012]任务安排 【斜率优化 + cdq分治】
题目 机器上有N个需要处理的任务,它们构成了一个序列.这些任务被标号为1到N,因此序列的排列为1,2,3...N.这N个任务被分成若干批,每批包含相邻的若干任务.从时刻0开始,这些任务被分批加工,第i ...
- BZOJ2726: [SDOI2012]任务安排
题目:http://www.lydsy.com/JudgeOnline/problem.php?id=2726 倒着做,前面的点对后面的点都是有贡献的. f[i]=min(f[j]+cost[i]*( ...
随机推荐
- 超详细的Java面试题总结(一)之Java基础知识篇
面向对象和面向过程的区别 面向过程: 优点:性能比面向对象高,因为类调用时需要实例化,开销比较大,比较消耗资源;比如单片机.嵌入式开发.Linux/Unix等一般采用面向过程开发,性能是最重要的因 ...
- 关于auto-keras训练cnn模型
# 我在训练自己的人脸分类模型的时候发现图片的维度不能太高,经过很多次测试过后觉得一般人脸图片分为28*28大小训练的效果比较好.建议在使用其训练自己的物体识别模型的时候,尽量把图片压缩到28*28# ...
- AndroidStudio获得发布版安全码SHA1
耗了一下午才搞定 在cmd中: 1.打开keytool的目录:即JDK的安装目录 2.输入口令: (E:\tenyears\tenyears\app是keystore文件的目录)
- Eclipse中SVN更改连接用户
Eclipse中安装了SVN插件,当连接到SVN服务器后,便无法从客户端更改连接帐号 百度一下,也就知道 查看Eclipse中使用的是什么SVN Interface,位置在windows > p ...
- 辨别苹果数据线真伪 苹果计算器 Dashboard 知识
辨别苹果数据线真伪 苹果计算器 Dashboard 知识 苹果数据线真伪的最简单的辨别: 线质柔软 用数据线连接适配器(苹果自带的适配器)充电 连接手机 如果该手机数据线是假的, 在手机上会提示”该 ...
- 微信小程序验证码获取倒计时
wxml <button disabled='{{disabled}}' bindtap="goGetCode">{{code}}</button> js ...
- windows访问linux共享文件夹
1.windows的网上邻居,是通过smb协议来共享信息的,如果需要给访问linux上的共享目录被windows访问到,需要linux有smb协议 sudo apt-get install samba ...
- (转)函数后面加const--C++ const成员函数
类的成员函数后面加 const,表明这个函数不会对这个类对象的数据成员(准确地说是非静态数据成员)作任何改变. 在设计类的时候,一个原则就是对于不改变数据成员的成员函数都要在后面加 const,而对于 ...
- Nginx-请求处理与响应
void ngx_http_init_connection(ngx_connection_t *c) { ngx_uint_t i; ngx_event_t *rev; struct sockaddr ...
- 布隆过滤器 zz
布隆过滤器[1](Bloom Filter)是由布隆(Burton Howard Bloom)在1970年提出的.它实际上是由一个很长的二进制向量和一系列随机映射函数组成,布隆过滤器可以用于检索一个元 ...