https://vjudge.net/problem/UVA-12716

求有多少对整数(a,b)满足:1<=b<=a<=n,且gcd(a,b)=a XOR b

结论:若gcd(a,b)= a XOR b = c,则c=a-b

证明:

1、任意两个数a,b,若a>=b,则 a-b <= a XOR b

2、若 c为a、b的最大公约数,且a>=b,则 a-b >= c

假设存在 c 使得 a-b > c,则 c<a-b<=a XOR b,即 c<a XOR b,与题意不符

所以枚举a,枚举a的约数c,b=a-c, gcd(a,b)= gcd(a,a-c)= c

只需要判断 是否满足 a XOR b = c即可

小技巧:先枚举c,再枚举a,时间复杂度为O(logn)

#include<cstdio>
using namespace std;
int ans[];
int main()
{
int T,n,a,b,c;
for(c=;c<=;c++)
for(a=c<<;a<=;a+=c )
{
b=a-c;
if(c==(a^b)) ans[a]++;
}
for(int i=;i<=;i++) ans[i]+=ans[i-];
scanf("%d",&T);
for(int t=;t<=T;t++)
{
scanf("%d",&n);
printf("Case %d: %d\n",t,ans[n]);
}
}

UVA 12716 GCD XOR的更多相关文章

  1. UVA.12716 GCD XOR (暴力枚举 数论GCD)

    UVA.12716 GCD XOR (暴力枚举 数论GCD) 题意分析 题意比较简单,求[1,n]范围内的整数队a,b(a<=b)的个数,使得 gcd(a,b) = a XOR b. 前置技能 ...

  2. UVa 12716 - GCD XOR(筛法 + 找规律)

    链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...

  3. UVa 12716 (GCD == XOR) GCD XOR

    题意: 问整数n以内,有多少对整数a.b满足(1≤b≤a)且gcd(a, b) = xor(a, b) 分析: gcd和xor看起来风马牛不相及的运算,居然有一个比较"神奇"的结论 ...

  4. UVA 12716 GCD XOR (异或)

    题意:求出[1,n]中满足gcd(a,b)=a xor b,且1<=a<=b<=n的对数 题解:首先a xor b = c,则a xor c = b,而b是a的约数,则可以使用素数筛 ...

  5. UVA 12716 GCD XOR(数论+枚举+打表)

     题意:给你一个N,让你求有多少组A,B,  满足1<= B <= A <= N, 且 gcd(A,B) = A XOR B. 思路:首先我们能够得出两个结论: A-B > ...

  6. UVA - 12716 GCD XOR(GCD等于XOR)(数论)

    题意:输入整数n(1<=n<=30000000),有多少对整数(a, b)满足:1<=b<=a<=n,且gcd(a,b)=a XOR b. 分析:因为c是a的约数,所以枚 ...

  7. UVA 12716 GCD XOR【异或】

    参考:http://www.cnblogs.com/naturepengchen/articles/3952145.html #include<stdio.h> #include<s ...

  8. UVa 12716 GCD XOR (简单证明)

    题意: 问 gcd(i,j) = i ^ j  的对数(j <=i <= N ) N的范围为30000000,有10000组例子 思路:GCD(a,b) = a^b = c GCD(a/c ...

  9. GCD XOR UVA 12716 找规律 给定一个n,找多少对(a,b)满足1<=b<=a<=n,gcd(a,b)=a^b;

    /** 题目:GCD XOR UVA 12716 链接:https://vjudge.net/problem/UVA-12716 题意:给定一个n,找多少对(a,b)满足1<=b<=a&l ...

随机推荐

  1. iis 10 重新注册iis

    iis 10 使用该命令 提示 版本不支持 C:\WINDOWS\system32>c:\windows\microsoft.net\framework64\v4.0.30319\aspnet_ ...

  2. python学习笔记04:安装pip

    如果是从python官网下载的python版本(2.7.9或3.4)的安装包,其中已经内置了pip工具.那么只需要升级pip即可. 检测是否已安装pip: python -m pip --versio ...

  3. week12 201621044079 流与文件

    作业12-流与文件 1. 本周学习总结 1.1 以你喜欢的方式(思维导图或其他)归纳总结多流与文件相关内容. 2. 面向系统综合设计-图书馆管理系统或购物车 使用流与文件改造你的图书馆管理系统或购物车 ...

  4. 【Docker 命令】 - search 命令

    docker search : 从Docker Hub查找镜像 语法 docker search [OPTIONS] TERM OPTIONS说明: --automated :只列出 automate ...

  5. 【Docker 命令】- ps命令

    docker ps : 列出容器 语法 docker ps [OPTIONS] OPTIONS说明: -a:显示所有的容器,包括未运行的. -f:根据条件过滤显示的内容. --format :指定返回 ...

  6. matlab中滤波函数

    matlab自带滤波器函数小结(图像处理)   1 线性平滑滤波器 用MATLAB实现领域平均法抑制噪声程序: I=imread(' c4.jpg '); subplot(231) imshow(I) ...

  7. Delphi实现在数据库中存取图像

    向窗体上添加一个TListBox组件.一个TImage组件和一个TTable组件,设计完成的主界面如图1所示. 图1 主界面 本系统中需要设计一个新的基于Paradox 7的数据库Image.db,图 ...

  8. Spring MVC实践

    MVC 设计概述 在早期 Java Web 的开发中,统一把显示层.控制层.数据层的操作全部交给 JSP 或者 JavaBean 来进行处理,我们称之为 Model1: 出现的弊端: JSP 和 Ja ...

  9. IO Model- 同步,异步,阻塞,非阻塞

    同步(synchronous) IO和异步(asynchronous) IO,阻塞(blocking) IO和非阻塞(non-blocking)IO分别是什么,到底有什么区别?这个问题其实不同的人给出 ...

  10. BZOJ4241 历史研究(莫队)

    如果分块的话与区间众数没有本质区别.这里考虑莫队. 显然莫队时的删除可以用堆维护,但多了一个log不太跑得过. 有一种叫回滚莫队的trick,可以将问题变为只有加入操作.按莫队时分的块依次处理,一块中 ...