【bzoj4872】[Shoi2017]分手是祝愿 数论+期望dp
题目描述
输入
输出
样例输入
4 0
0 0 1 1
样例输出
512
题解
数论+期望dp,考场上唯一A了的一道题
首先解决正常游戏的操作次数。
易知每个开关都不能被其它的开关组所替代,且每个开关只会影响它和编号比它小的灯。
于是可以从大到小循环一遍,如果一个灯是亮着的,那么把它关闭,把它约数的状态反转,并把$num$++。
即最终有$num$个正确选择。
然后解决期望次数。
设$b[i]$表示从有$i$个正确选择变为有$i-1$个正确选择的期望操作次数。
那么可以推出$b[i]=\frac in+(1-\frac in)·(1+b[i+1]+b[i])$,即$b[i]=\frac{(n-i)b[i+1]+n}i$。
特殊的,$b[n+1]=0$
然后就可以推出$b$数组,再判断一下$num$与$k$的大小关系并累加一下,最后乘一下$n!$即可。
考场原代码(去掉了文件操作):
#include <cstdio>
#define mod 100003
typedef long long ll;
int v[100010];
ll b[100010];
ll qpow(ll x , ll y)
{
ll ans = 1;
while(y)
{
if(y & 1) ans = ans * x % mod;
x = x * x % mod;
y >>= 1;
}
return ans;
}
int main()
{
int n , k , i , j , num = 0;
ll t = 0;
scanf("%d%d" , &n , &k);
for(i = 1 ; i <= n ; i ++ ) scanf("%d" , &v[i]);
for(i = n ; i >= 1 ; i -- )
{
if(v[i])
{
for(j = 1 ; j * j <= i ; j ++ )
{
if(i % j == 0)
{
v[j] ^= 1;
if(j * j != i) v[i / j] ^= 1;
}
}
num ++ ;
}
}
for(i = n ; i >= 1 ; i -- ) b[i] = (b[i + 1] * (n - i) % mod + n) % mod * qpow(i , mod - 2) % mod;
if(n == k || k > num) t = num;
else
{
for(i = num ; i > k ; i -- ) t = (t + b[i]) % mod;
t = (t + k) % mod;
}
for(i = 1 ; i <= n ; i ++ ) t = t * i % mod;
printf("%lld\n" , t);
return 0;
}
【bzoj4872】[Shoi2017]分手是祝愿 数论+期望dp的更多相关文章
- 2018.11.01 bzoj4872: [Shoi2017]分手是祝愿(期望dp)
传送门 一道不错的题. 考虑n==kn==kn==k的时候怎么做. 显然应该从nnn到111如果灯是开着的就把它关掉这样是最优的. 不然如果乱关的话会互相影响肯定不如这种优. 于是就可以定义状态f[i ...
- 【BZOJ4872】[Shoi2017]分手是祝愿 数学+期望DP
[BZOJ4872][Shoi2017]分手是祝愿 Description Zeit und Raum trennen dich und mich. 时空将你我分开.B 君在玩一个游戏,这个游戏由 n ...
- 【BZOJ4872】分手是祝愿(期望DP)
题意: B 君在玩一个游戏,这个游戏由 n 个灯和 n 个开关组成,给定这 n 个灯的初始状态,下标为 从 1 到 n 的正整数.每个灯有两个状态亮和灭,我们用 1 来表示这个灯是亮的,用 0 表示这 ...
- BZOJ4872 [六省联考2017]分手是祝愿 【期望dp】
题目 Zeit und Raum trennen dich und mich. 时空将你我分开.B 君在玩一个游戏,这个游戏由 n 个灯和 n 个开关组成,给定这 n 个灯的初始状态,下标为 从 1 ...
- 洛谷P3750 [六省联考2017]分手是祝愿(期望dp)
传送门 嗯……概率期望这东西太神了…… 先考虑一下最佳方案,肯定是从大到小亮的就灭(这个仔细想一想应该就能发现) 那么直接一遍枚举就能$O(nlogn)$把这个东西给搞出来 然后考虑期望dp,设$f[ ...
- BZOJ4872: [Shoi2017]分手是祝愿【概率期望DP】【思维好题】
Description Zeit und Raum trennen dich und mich. 时空将你我分开.B 君在玩一个游戏,这个游戏由 n 个灯和 n 个开关组成,给定这 n 个灯的初始状态 ...
- 【Luogu】P3750分手是祝愿(期望DP)
题目链接 这题好喵啊…… 设f[i]是最少用i次才能全关上转移到最少用i-1次才能全关上灯的期望值,那么n个灯里有i个是正确的,剩下的都是不正确的 因此期望是$f[i]=frac{n}{i}+frac ...
- [六省联考2017]分手是祝愿(期望+DP)
题解 很容易想出来最优策略是什么. 就是从n到1看到开着的灯就把它关了 我们预处理出当前状态把灯全部关闭后的最少步数cnt 然后我们的主人公就要瞎按... 设dp[i]代表当前状态最优解为i步时走到d ...
- [六省联考2017]分手是祝愿 题解(期望dp)
题目描述 B 君在玩一个游戏,这个游戏由 n 个灯和 n 个开关组成,给定这 n 个灯的初始状态,下标为从 1 到 n 的正整数. 每个灯有两个状态亮和灭,我们用 1 来表示这个灯是亮的,用 0 表示 ...
随机推荐
- swift向方法传数组参数的语法
总是记不住向方法中传数组参数的语法,所以记录一下. func calculateStatistics(scores:[Int]) -> (min:Int,max:Int,sum:Int) { v ...
- 使用Parallel实现简单的并行操作
using System; using System.Collections.Generic; using System.Diagnostics; using System.Linq; using S ...
- 现在的C语言编辑器里的int范围为什么是-2147483648~2147483647 2014-08-05 10:21 100人阅读 评论(0) 收藏
下面是引用百度文库的一段话: "这得从二进制的原码说起: 如果以最高位为符号位,二进制原码最大为0111111111111111=215-1=32767 最小为111111111111111 ...
- C#使用技巧之调用JS脚本(转)
.创建个Winform项目. .在From1上增加一个文本框一个按钮. .在解决方案中创建一个test.js文件. test.js代码如下: function sayHello(str) { retu ...
- Application Request Route实现IIS Server Farms集群负载详解(转)
http://www.cnblogs.com/knowledgesea/p/5099893.html http://www.cnblogs.com/smileberry/p/4300849.html
- makefile之foreach函数
#$(foreach <var>,<list>,<text>) #把参数<list>中的单词逐一取出放到参数<var>所指定的变量中,然后再 ...
- [android] 本地推送服务
遇到新需求:游戏要添加本地的推送功能,ios比较好搞,在应用退出时的系统回调中设置,android就稍稍麻烦一点,需要用到 android中的service,和receiver
- TCP/IP模型
TCP/IP是一组用在实现网络相互连接的通信协议,internet网络体系结构就是以TCP/IP为核心的. TCP/IP分成了四个层次 1.应用层 应用层对应与OSI参考模型的高层,为用户提供了所需要 ...
- oracle,mysql分页
<?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE mapper PUBLIC "-/ ...
- 机器学习算法( 五、Logistic回归算法)
一.概述 这会是激动人心的一章,因为我们将首次接触到最优化算法.仔细想想就会发现,其实我们日常生活中遇到过很多最优化问题,比如如何在最短时间内从A点到达B点?如何投入最少工作量却获得最大的效益?如何设 ...