题意:求节点数为n的,高度大于等于h的二叉树的个数。

题解:

  一开始没看到二叉树的限制,,,想了好久。因为数据范围很小,所以可以考虑一些很暴力的做法。

  有2种DP方式都可以过。

  1,f[i][j]表示节点数为i,高度恰好为j的方案数,那么$ans = \sum_{i = h}^{i <= n}{f[n][i]}$.

    于是考虑转移,首先枚举节点数i,然后枚举左儿子Size j,顺便就可以算出右儿子Size,但是因为先枚举节点数为i时的高度不方便转移,所以考虑直接枚举左儿子高度和右儿子高度,然后直接转移即可(具体转移方程看代码)。

    复杂度$n ^ 4$  

  2,f[i][j]表示节点数为i,高度小于等于j的方案数,那么$ans = f[n][n] - f[n][h - 1]$.

    考虑转移,直接枚举左儿子Size,那么就可以算出右儿子Size了,然后因为是高度小于等于j的方案数,所以只需要从f[lson][j - 1] * f[rson][j - 1]转移而来即可。

 

 #include<bits/stdc++.h>
using namespace std;
#define R register int
#define AC 40
#define LL long long int n, h;
LL ans, f[AC][AC];//i个点,高度恰好为j的方案数 void pre()
{
scanf("%d%d", &n, &h);
} void work()
{
f[][] = ;
for(R i = ; i <= n; i ++)//枚举点数
for(R j = ; j < i; j ++)//枚举左子树Size
{
int b = i - j - ;//右子树大小
for(int l = ; l <= j; l ++)//枚举左子树高度
for(int k = ; k <= b; k ++)//枚举右子树高度
f[i][max(l, k) + ] += f[j][l] * f[b][k];
}
for(R i = h; i <= n; i ++) ans += f[n][i];
cout << ans << endl;
} void work2()//f[i][j]表示节点数为i,高度小于等于j的方案数
{
for(R i = ; i <= n; i ++) f[][i] = ;
for(R i = ; i <= n; i ++)//枚举高度
for(R j = ; j <= n; j ++)//枚举节点个数
for(R k = ; k < j; k ++)//枚举左子树size
f[j][i] += f[k][i - ] * f[j - k - ][i - ];
cout << f[n][n] - f[n][h - ] << endl;
} int main()
{
//freopen("in.in", "r", stdin);
pre();
work2();
//fclose(stdin);
return ;
}

   

    

CF9d How many trees?的更多相关文章

  1. [CF9D]How Many Trees?_动态规划_树形dp_ntt

    How many trees? 题目链接:https://www.codeforces.com/contest/9/problem/D 数据范围:略. 题解: 水题. $f_{i,j}$表示$i$个节 ...

  2. CF9D How many trees? (dp)

    这题我想了好久 设 \(f_{i,j}\) 为 \(i\) 结点 \(<=j\) 的方案数 固定根,枚举左右子树,就有: \[f_{i,j}=\sum_{k=0}^{n-1}f_{k,j-1}* ...

  3. 【DP】【CF9D】 How many trees?

    传送门 Description 给你两个正整数\(n,h\),求由\(n\)个点组成的高度大于等于\(h\)的二叉树有多少个 Input 一行两个整数\(n,h\) Output 一个整数代表答案. ...

  4. [C#] C# 知识回顾 - 表达式树 Expression Trees

    C# 知识回顾 - 表达式树 Expression Trees 目录 简介 Lambda 表达式创建表达式树 API 创建表达式树 解析表达式树 表达式树的永久性 编译表达式树 执行表达式树 修改表达 ...

  5. hdu2848 Visible Trees (容斥原理)

    题意: 给n*m个点(1 ≤ m, n ≤ 1e5),左下角的点为(1,1),右上角的点(n,m),一个人站在(0,0)看这些点.在一条直线上,只能看到最前面的一个点,后面的被档住看不到,求这个人能看 ...

  6. [LeetCode] Minimum Height Trees 最小高度树

    For a undirected graph with tree characteristics, we can choose any node as the root. The result gra ...

  7. [LeetCode] Unique Binary Search Trees 独一无二的二叉搜索树

    Given n, how many structurally unique BST's (binary search trees) that store values 1...n? For examp ...

  8. [LeetCode] Unique Binary Search Trees II 独一无二的二叉搜索树之二

    Given n, generate all structurally unique BST's (binary search trees) that store values 1...n. For e ...

  9. 2 Unique Binary Search Trees II_Leetcode

    Given n, generate all structurally unique BST's (binary search trees) that store values 1...n. For e ...

随机推荐

  1. AT+CGDCONT=0,"IP","ctnb"设置问题

    发现有的时候,设置不成功,经过验证正确的方法是,模组刚上电,或者刚复位的时候,先发送AT+CFUN=1,然后再去设置APN AT+CFUN= OK AT+CGDCONT=,"IP" ...

  2. 移动onenet基础通信套件V1.08版本的AT指令测试

    1. 本次测试版本V1.08,AT+MIPLCREATE,首先需要一个配置文件.该指令创建一个基础通信套件的实例 2. 看下CGFID=2的配置,这个连接类型,UDP是1还是0?用户名和密码是什么?哪 ...

  3. DSP5509的定时器实验-第2篇

    1. 导入Easy5509开发板的例程EX02_TIME,5509有2个16位的定时器,有点少啊 2. 直接编译,提示找不到CSL.h,其实我也好奇,CSL库是从哪里来的?RTS库从哪里来的?头文件在 ...

  4. 使用 adb 命令一次性为多个设备安装 apk

    使用 adb 命令一次性为多个设备安装 apk 原创 2016年07月15日 10:40:53 3154 命令简介 adb install [-lrtsdg] (file) 把包文件推送到设备上并安装 ...

  5. java对象创建过程简介

    这是看书的记录,字有点丑啊还是将就搬上来 -.-,等把后面看了完善图

  6. Qt 解析EXcel文件

    写代码需要将excel中的文件导入到数据库中 网上找到以为大神写的,但是当初没有保存,也没有找到 我几乎是原分不动拔下来的,希望大神莫怪 void AddDialog::readExcel(QStri ...

  7. spark操作数据库的几种方法

    一.使用jdbcRDD的接口: SparkConf conf = new SparkConf(); conf.setAppName("Simple Application").se ...

  8. FPGA学习-PS2接口

    选自http://m.elecfans.com/article/774143.html

  9. 改maven下创建的动态网站依赖的jre版本

    问题描述 通过maven创建一个动态网站后,eclipse会提示一个提醒 Build path specifies execution environment J2SE-1.5. There are ...

  10. javaScript中两个等于号和三个等于号之间的区别

    一言以蔽之:==先转换类型再比较,===先判断类型,如果不是同一类型直接为false. ===表示恒等于,比较的两边要绝对的相同 alert(0 == ""); // trueal ...