题目传送门

题目描述

在一个圆形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分。

试设计出1个算法,计算出将N堆石子合并成1堆的最小得分和最大得分.

输入输出格式

输入格式:

数据的第1行试正整数N,1≤N≤100,表示有N堆石子.第2行有N个数,分别表示每堆石子的个数.

输出格式:

输出共2行,第1行为最小得分,第2行为最大得分.

输入输出样例

输入样例#1: 复制

4
4 5 9 4

  分析:显然是用DP。

  由于是环状,我们需要把它转换为链状,那么就把存储石子的数组a[]空间开大一倍,从n+1~2*n存储的值等于1~n存储的值,那么只需要从1到n枚举链的开头即可,链尾则分别为n到2*n-1。这样计算和环状是等效的。

  那么考虑状态转移方程,设d[i][j]是将i~j堆石子合并后得到的最大值,x[i][j]是将i~j堆石子合并后得到的最小值,首先两重循环i,j枚举区间的两端,然后再加一重循环枚举断点,也就是说,i~k和k+1~j分别是要合并的两堆石子,那么状态转移方程不难想到:

  d[i][j]=max(d[i][j],d[i][k]+d[k+1][j]+a[i]+...+a[j])

  x[i][j]=min(x[i][j],x[i][k]+x[k+1][j]+a[i]+...+a[j])

  显然两种计算不冲突,可以同时进行,然后a[i]+...+a[j]可以用前缀和优化,那么这题也就解决了。

  Code:

#include<bits/stdc++.h>
#define Fi(i,a,b) for(int i=a;i<=b;i++)
#define Fx(i,a,b) for(int i=a;i>=b;i--)
using namespace std;
const int N=;
int n,a[N],s[N],d[N][N],x[N][N];
int maxx,minn=0x3f3f3f3f;
int main()
{
ios::sync_with_stdio(false);
cin>>n;Fi(i,,n){cin>>a[i];a[n+i]=a[i];}
Fi(i,,*n)s[i]=s[i-]+a[i];
Fi(c,,n){
memset(x,0x7f,sizeof(x));
memset(d,,sizeof(d));
Fi(i,c,c+n-)d[i][i]=x[i][i]=;
Fx(i,c+n-,c)Fi(j,i+,c+n-)Fi(k,i,j-){
d[i][j]=max(d[i][j],d[i][k]+d[k+][j]+s[j]-s[i-]);
x[i][j]=min(x[i][j],x[i][k]+x[k+][j]+s[j]-s[i-]);}
maxx=max(maxx,d[c][c+n-]);
minn=min(minn,x[c][c+n-]);}
cout<<minn<<"\n"<<maxx;return ;
}

洛谷P1880 [NOI1995] 石子合并 [DP,前缀和]的更多相关文章

  1. 洛谷 P1880 [NOI1995]石子合并 题解

    P1880 [NOI1995]石子合并 题目描述 在一个圆形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分. 试 ...

  2. 洛谷P1880 [NOI1995]石子合并 纪中21日c组T4 2119. 【2016-12-30普及组模拟】环状石子归并

    洛谷P1880 石子合并 纪中2119. 环状石子归并 洛谷传送门 题目描述1 在一个圆形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石 ...

  3. 洛谷 P1880 [NOI1995] 石子合并(区间DP)

    传送门 https://www.cnblogs.com/violet-acmer/p/9852294.html 题解: 这道题是石子合并问题稍微升级版 这道题和经典石子合并问题的不同在于,经典的石子合 ...

  4. [洛谷P1880][NOI1995]石子合并

    区间DP模板题 区间DP模板Code: ;len<=n;len++) { ;i<=*n-;i++) //区间左端点 { ; //区间右端点 for(int k=i;k<j;k++) ...

  5. 洛谷 P1880 [NOI1995]石子合并

    题目描述 在一个圆形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分. 试设计出1个算法,计算出将N堆石子合并成1 ...

  6. 洛谷 P1880 [NOI1995]石子合并(区间DP)

    嗯... 题目链接:https://www.luogu.org/problem/P1880 这道题特点在于石子是一个环,所以让a[i+n] = a[i](两倍长度)即可解决环的问题,然后注意求区间最小 ...

  7. 【区间dp】- P1880 [NOI1995] 石子合并

    记录一下第一道ac的区间dp 题目:P1880 [NOI1995] 石子合并 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 代码: #include <iostream> ...

  8. 区间DP小结 及例题分析:P1880 [NOI1995]石子合并,P1063 能量项链

    区间类动态规划 一.基本概念 区间类动态规划是线性动态规划的拓展,它在分阶段划分问题时,与阶段中元素出现的顺序和由前一阶段的那些元素合并而来由很大的关系.例如状态f [ i ][ j ],它表示以已合 ...

  9. P1880 [NOI1995]石子合并[区间dp+四边形不等式优化]

    P1880 [NOI1995]石子合并 丢个地址就跑(关于四边形不等式复杂度是n方的证明) 嗯所以这题利用决策的单调性来减少k断点的枚举次数.具体看lyd书.这部分很生疏,但是我还是选择先不管了. # ...

随机推荐

  1. C11内存管理之道:智能指针

    1.shared_ptr共享智能指针 std::shared_ptr使用引用计数,每个shared_ptr的拷贝都指向相同的内存,在最后一个shared_ptr析构的时候,内存才会释放. 1.1 基本 ...

  2. C11性能之道:转移和转发

    1.move C++11中可以将左值强制转换为右值,从而避免对象的拷贝来提升性能.move将对象的状态或者所有权从一个对象转移到另一个对象,没有内存拷贝.深拷贝和move的区别如图: 从图可以看出,深 ...

  3. IIS7绑定多个HTTPS网站并应用自签名证书

    本文主要介绍如何在IIS中添加多个网站并使用同一个数字签名证书(win7+IIS7.5) IIS中添加站点site1,端口号为80,主机名为空.如下图: 创建证书 IIS->Server Cer ...

  4. 【BZOJ4104】解密运算 [暴力]

    解密运算 Time Limit: 10 Sec  Memory Limit: 512 MB[Submit][Status][Discuss] Description 对于一个长度为N的字符串,我们在字 ...

  5. bzoj 1594: [Usaco2008 Jan]猜数游戏——二分+线段树

    Description 为了提高自己低得可怜的智商,奶牛们设计了一个新的猜数游戏,来锻炼她们的逻辑推理能力. 游戏开始前,一头指定的奶牛会在牛棚后面摆N(1 <= N<= 1,000,00 ...

  6. Spring MVC 与 CORS

    1. CORS 简介 同源策略(same origin policy)是浏览器安全的基石.在同源策略的限制下,非同源的网站之间不能发送 ajax 请求的. 为了解决这个问题,w3c 提出了跨源资源共享 ...

  7. [Unity]在Shader中获取摄像机角度、视线的问题

    又踩了一坑,好在谷歌到了之前的一个人遇到相同的问题,顺利解决. 先说说问题背景,我目前的毕设是体数据渲染,实现的办法是raycast.最基本的一点就是在fragment program里,获取rayc ...

  8. scrapy学习笔记一

    以前写爬虫都是直接手写获取response然后用正则匹配,被大佬鄙视之后现在决定开始学习scrapy 一.安装 pip install scrapy 二.创建项目 scrapy startprojec ...

  9. 简谈const限定符

    const修饰的数据类型是常量类型,常量类型的对象和变量在定义初始化后是不能被更新的.其实只用记住这一个概念,就可以明白const操作对象的方法. 1)定义const常量 最简单的: const in ...

  10. PIL处理图片信息

    最近遇到了图片处理的一些问题,python提供了一些库可以很方便地帮助我们解决这些问题,在这里把我这几天的学习总结一下. 一.提取图片的RGB值 1.非代码:如果只是为了提取某张图片或者某个像素点的R ...