题目传送门

题目描述

在一个圆形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分。

试设计出1个算法,计算出将N堆石子合并成1堆的最小得分和最大得分.

输入输出格式

输入格式:

数据的第1行试正整数N,1≤N≤100,表示有N堆石子.第2行有N个数,分别表示每堆石子的个数.

输出格式:

输出共2行,第1行为最小得分,第2行为最大得分.

输入输出样例

输入样例#1: 复制

4
4 5 9 4

  分析:显然是用DP。

  由于是环状,我们需要把它转换为链状,那么就把存储石子的数组a[]空间开大一倍,从n+1~2*n存储的值等于1~n存储的值,那么只需要从1到n枚举链的开头即可,链尾则分别为n到2*n-1。这样计算和环状是等效的。

  那么考虑状态转移方程,设d[i][j]是将i~j堆石子合并后得到的最大值,x[i][j]是将i~j堆石子合并后得到的最小值,首先两重循环i,j枚举区间的两端,然后再加一重循环枚举断点,也就是说,i~k和k+1~j分别是要合并的两堆石子,那么状态转移方程不难想到:

  d[i][j]=max(d[i][j],d[i][k]+d[k+1][j]+a[i]+...+a[j])

  x[i][j]=min(x[i][j],x[i][k]+x[k+1][j]+a[i]+...+a[j])

  显然两种计算不冲突,可以同时进行,然后a[i]+...+a[j]可以用前缀和优化,那么这题也就解决了。

  Code:

#include<bits/stdc++.h>
#define Fi(i,a,b) for(int i=a;i<=b;i++)
#define Fx(i,a,b) for(int i=a;i>=b;i--)
using namespace std;
const int N=;
int n,a[N],s[N],d[N][N],x[N][N];
int maxx,minn=0x3f3f3f3f;
int main()
{
ios::sync_with_stdio(false);
cin>>n;Fi(i,,n){cin>>a[i];a[n+i]=a[i];}
Fi(i,,*n)s[i]=s[i-]+a[i];
Fi(c,,n){
memset(x,0x7f,sizeof(x));
memset(d,,sizeof(d));
Fi(i,c,c+n-)d[i][i]=x[i][i]=;
Fx(i,c+n-,c)Fi(j,i+,c+n-)Fi(k,i,j-){
d[i][j]=max(d[i][j],d[i][k]+d[k+][j]+s[j]-s[i-]);
x[i][j]=min(x[i][j],x[i][k]+x[k+][j]+s[j]-s[i-]);}
maxx=max(maxx,d[c][c+n-]);
minn=min(minn,x[c][c+n-]);}
cout<<minn<<"\n"<<maxx;return ;
}

洛谷P1880 [NOI1995] 石子合并 [DP,前缀和]的更多相关文章

  1. 洛谷 P1880 [NOI1995]石子合并 题解

    P1880 [NOI1995]石子合并 题目描述 在一个圆形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分. 试 ...

  2. 洛谷P1880 [NOI1995]石子合并 纪中21日c组T4 2119. 【2016-12-30普及组模拟】环状石子归并

    洛谷P1880 石子合并 纪中2119. 环状石子归并 洛谷传送门 题目描述1 在一个圆形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石 ...

  3. 洛谷 P1880 [NOI1995] 石子合并(区间DP)

    传送门 https://www.cnblogs.com/violet-acmer/p/9852294.html 题解: 这道题是石子合并问题稍微升级版 这道题和经典石子合并问题的不同在于,经典的石子合 ...

  4. [洛谷P1880][NOI1995]石子合并

    区间DP模板题 区间DP模板Code: ;len<=n;len++) { ;i<=*n-;i++) //区间左端点 { ; //区间右端点 for(int k=i;k<j;k++) ...

  5. 洛谷 P1880 [NOI1995]石子合并

    题目描述 在一个圆形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分. 试设计出1个算法,计算出将N堆石子合并成1 ...

  6. 洛谷 P1880 [NOI1995]石子合并(区间DP)

    嗯... 题目链接:https://www.luogu.org/problem/P1880 这道题特点在于石子是一个环,所以让a[i+n] = a[i](两倍长度)即可解决环的问题,然后注意求区间最小 ...

  7. 【区间dp】- P1880 [NOI1995] 石子合并

    记录一下第一道ac的区间dp 题目:P1880 [NOI1995] 石子合并 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 代码: #include <iostream> ...

  8. 区间DP小结 及例题分析:P1880 [NOI1995]石子合并,P1063 能量项链

    区间类动态规划 一.基本概念 区间类动态规划是线性动态规划的拓展,它在分阶段划分问题时,与阶段中元素出现的顺序和由前一阶段的那些元素合并而来由很大的关系.例如状态f [ i ][ j ],它表示以已合 ...

  9. P1880 [NOI1995]石子合并[区间dp+四边形不等式优化]

    P1880 [NOI1995]石子合并 丢个地址就跑(关于四边形不等式复杂度是n方的证明) 嗯所以这题利用决策的单调性来减少k断点的枚举次数.具体看lyd书.这部分很生疏,但是我还是选择先不管了. # ...

随机推荐

  1. CCF-20170901

    试题编号:    201709-1 试题名称:    打酱油 时间限制:    1.0s 内存限制:    256.0MB 问题描述 小明带着N元钱去买酱油.酱油10块钱一瓶,商家进行促销,每买3瓶送 ...

  2. 【C++对象模型】第三章 Data语义学

    1. Data Member 的布局 同一个Access Section(private, public等)中,data member的顺序按照声明顺序排列,但是没有规定需要连续排序.同时编译器可能会 ...

  3. zk-web

    Ref:https://github.com/qiuxiafei/zk-web zk-web是一个用clojure with noir and boostrap写的Zookeeper WEB UI管理 ...

  4. 局部性原理的点滴应用场景 use of localityprinciple

    话说九月份博士入学面试的时候被问到了一个问题:请说明一下局部性原理在计算机科学中的应用场景?(哈哈,不记得怎么问的了,大概是这个意思)但是巴拉巴拉整半天却也只说出了一个Cache,后来补充的也都是跟C ...

  5. vue_axios请求后台接口cookie无法传值

    2018年3月7日: 当我们使用http向后台发送请求的时候,需要通过cookie把一些密匙传递给后台做判断授权登陆,当然前提是后台会先把cookie保持到本地. 使用vue开发的时候,会出现这个问题 ...

  6. ribbon设置url级别的超时时间

    序 ribbon的超时设置,只能按转发的serviceId来分的,无法像nginx那样直接在每个转发的链接里头设置超时时间.这里hack一下,实现url基本的ribbon超时时间设置.具体的思路就是重 ...

  7. Java中的return语句使用总结

    Java中的return语句总是和方法有密切关系,return语句总是用在方法中,有两个作用,一个是返回方法指定类型的值(这个值总是确定的),一个是结束方法的执行(仅仅一个return语句).   在 ...

  8. Java——关于static关键字的那些事总结

    前言: 先说说今天为啥要谈这个东西,虽然学Java已经有两年了,但是今天,本着温故而知新的态度,仔细的第三次翻看了<Head Firt Java>这本书,虽然这本书介绍的很多东西都特别基础 ...

  9. CentOS7安装MySQL5.7以及修改密码

    CentOS7安装mysql [root@bd005 ~]# wget http://dev.mysql.com/get/mysql57-community-release-el7-8.noarch. ...

  10. perl6文件操作

    use v6; #perl6中读取文件方法 #:r 只读, :w 只写, :rw 读写, :a 追加 my $fp = open 'filename.txt', :rw; for $fp.^metho ...