链接:

https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=4077

题意:

三角剖分是指用不相交的对角线把一个多边形分成若干个三角形。
输入一个简单m(2<m<50)边形,找一个最大三角形面积最小的三角剖分。输出最大三角形的面积。

分析:

和“最优三角剖分”一样,设d(i,j)为子多边形i,i+1,…,j-1,j(i<j)的最优解,
则状态转移方程为d(i,j)= min{S(i,j,k), d(i,k), d(k,j) | i<k<j},其中S(i,j,k)为三角形i-j-k的面积。
如果三角形i-j-k的内部有其他的点,则跳过。

代码:

 #include <cstdio>
#include <cmath>
#include <algorithm>
using namespace std; const int UP = + ;
int n, x[UP], y[UP];
double d[UP][UP]; // d[L][R]为子多边形L,L+1,…,R-1,R(L<R)的最优解 inline double area(int a, int b, int c){ // 知道三角形的三个点,用行列式求其面积
return 0.5*fabs(x[a]*(y[b]-y[c]) + x[b]*(y[c]-y[a]) + x[c]*(y[a]-y[b]));
} bool judge(int a, int b, int c){ // 判断三角形abc的内部是否有其他的点
for(int i = ; i < n; i++){
if(i == a || i == b || i == c) continue;
double s = area(a,b,i) + area(a,c,i) + area(b,c,i) - area(a,b,c);
if(fabs(s) < 0.01) return false;
}
return true;
} int main(){
int T;
scanf("%d", &T);
while(T--){
scanf("%d", &n);
for(int i = ; i < n; i++) scanf("%d%d", &x[i], &y[i]); for(int L = n - ; L >= ; L--){
d[L][L+] = ;
for(int R = L + ; R < n; R++){
double& v = d[L][R]; v = 1e99;
for(int M = L + ; M < R; M++) if(judge(L, M, R))
v = min(v, max(area(L,M,R), max(d[L][M], d[M][R])));
}
}
printf("%.1f\n", d[][n-]);
}
return ;
}

UVa 1331 - Minimax Triangulation(区间DP + 计算几何)的更多相关文章

  1. UVA - 1331 Minimax Triangulation (区间dp)(最优三角剖分)

    题目链接 把一个多边形剖分成若干个三角形,使得其中最大的三角形面积最小. 比较经典的一道dp问题 设dp[l][r]为把多边形[l,r]剖分成三角形的最大三角形面积中的最小值,则$dp[l][r]=m ...

  2. UVA-1331 Minimax Triangulation 区间dp 计算几何 三角剖分 最大三角形最小化

    题目链接:https://cn.vjudge.net/problem/UVA-1331 题意 给一个任意多边形,把它分为多个三角形. 求某方案中最大的三角形是各方案中最小的面积的三角形面积. 思路 学 ...

  3. uva 1331 - Minimax Triangulation(dp)

    option=com_onlinejudge&Itemid=8&page=show_problem&category=514&problem=4077&mosm ...

  4. Uva 1331 - Minimax Triangulation(最优三角剖分 区间DP)

    题目大意:依照顺时针或者逆时针的顺序给出多边的点,要将这个多边形分解成n-2个三角形,要求使得这些三角行中面积最大的三角形面积尽量小,求最小值. 思路:用区间DP能够非常方便解决,多边形可能是凹边形, ...

  5. UVA 10003 Cutting Sticks 区间DP+记忆化搜索

    UVA 10003 Cutting Sticks+区间DP 纵有疾风起 题目大意 有一个长为L的木棍,木棍中间有n个切点.每次切割的费用为当前木棍的长度.求切割木棍的最小费用 输入输出 第一行是木棍的 ...

  6. Uva 10891 经典博弈区间DP

    经典博弈区间DP 题目链接:https://uva.onlinejudge.org/external/108/p10891.pdf 题意: 给定n个数字,A和B可以从这串数字的两端任意选数字,一次只能 ...

  7. uva 10003 Cutting Sticks(区间DP)

    题目连接:10003 - Cutting Sticks 题目大意:给出一个长l的木棍, 再给出n个要求切割的点,每次切割的代价是当前木棍的长度, 现在要求输出最小代价. 解题思路:区间DP, 每次查找 ...

  8. UVa 1632 阿里巴巴(区间DP)

    https://vjudge.net/problem/UVA-1632 题意: 直线上有n个点,其中第i个点的坐标是xi,且它会在di秒之后消失.Alibaba可以从任意位置出发,求访问完所有点的最短 ...

  9. uva 10739【基础(区间)dp】

    Uva 10739 题意:给定字符串,可以增加.删除.修改任意字符,问最少经过多少次操作使字符串回文. 题解:定义dp[l][r]表示把从l到r的子串Sl...Sr变成回文串需要操作的最少次数.字符可 ...

随机推荐

  1. FileReader实现上传图片前本地预览

    平时做图片上传预览时如果没有特殊的要求就直接先把图片传到后台去,成功之后拿到URL再渲染到页面上.或者使用前端插件.这篇博客使用的是HTML5的新特性——FileReader.由于兼容性,这种方法不适 ...

  2. 在WPF中UserControl

    在这里我们将将打造一个UserControl(用户控件)来逐步讲解如何在WPF中自定义控件,并将WPF的一些新特性引入到自定义控件中来.我们制作了一个带语音报时功能的钟表控件, 效果如下: 在VS中右 ...

  3. RabbitMQ - exchange

    总结一下几种ExchangeTypes. 之前写发布/订阅模式时第一次提到了exchange type.即producer不是将消息直接放到队列中,而是先到exchange中,exchange主要用于 ...

  4. mybatis学习之分页

    分页一般分为物理分页:先查询所有值再分页输出,逻辑分页:直接分页查询输出,mybatis支持物理分页,如下: 1.物理分页: mapper映射: <select id="findStu ...

  5. nrm的使用

    我们在开发过程中,经常会使用到 npm  install ,但是有时候npm是不稳定的,这就大大的降低了我们的开发效率.nrm正好解决了我们的这一痛点,他可以在不同的镜像之间切换,非常的方便. 一.n ...

  6. PHP5中Static和Const关键字

    (1) static static要害字在类中是,描述一个成员是静态的,static能够限制外部的访问,因为static后的成员是属于类的,是不属于任何对象实例,其他类是无法访问的,只对类的实例共享, ...

  7. [转]Shared——Javascript中的call详解

    call( ) 一.call的使用 call 方法第一个参数是作为函数上下文的对象,第二个参数是一个参数列表. var obj = { name: 'J' } function func(p1, p2 ...

  8. oracle 基础笔记

    sqlplus / as sysbda;-- 运行命令conn scott/tiger [as sysdba];-- 登录show user;查看当前用户alter user scott accoun ...

  9. innerHTML、innerText、outerHTML、textContent的区别

    示例html代码: <div id="test"> <span style="color:red">test1</span> ...

  10. Creator4.2建模心得与技巧1——树的建立与跟随摄像机旋转

    Creator建模: 树一般在虚拟现实程序中都用面来实现,一种方法是通过两个面相互垂直成90度叠放在一起,另一种方法是让树面正对着视角一起旋转.这里主要说一下第二种方法. 主要思路:把树面一直正对着摄 ...