[NOIp2016提高组]组合数问题
题目大意:
给定n,m和k,对于所有的0<=i<=n,0<=j<=min(i,m)有多少对(i,j)满足C(j,i)是k的倍数。
思路:
先预处理出组合数,再预处理一下能整除个数的前缀和,最后直接答即可。
#include<cstdio>
#include<cctype>
inline int getint() {
register char ch;
while(!isdigit(ch=getchar()));
register int x=ch^'';
while(isdigit(ch=getchar())) x=(((x<<)+x)<<)+(ch^'');
return x;
}
const int N=;
int c[N][N],s[N][N];
int main() {
int T=getint(),k=getint();
for(register int i=;i<N;i++) {
c[i][]=;
for(register int j=;j<=i;j++) {
c[i][j]=(c[i-][j-]+c[i-][j])%k;
}
}
for(register int i=;i<N;i++) {
for(register int j=;j<N;j++) {
s[i][j]=s[i][j-]+s[i-][j]-s[i-][j-];
if(!c[i][j]&&j<=i) s[i][j]++;
}
}
while(T--) {
const int n=getint(),m=getint();
printf("%d\n",s[n][m]);
}
return ;
}
[NOIp2016提高组]组合数问题的更多相关文章
- Noip2016提高组 组合数问题problem
Day2 T1 题目大意 告诉你组合数公式,其中n!=1*2*3*4*5*...*n:意思是从n个物体取出m个物体的方案数 现给定n.m.k,问在所有i(1<=i<=n),所有j(1< ...
- Luogu P2822 [NOIp2016提高组]组合数问题 | 数学、二维前缀和
题目链接 思路:组合数就是杨辉三角,那么我们只要构造一个杨辉三角就行了.记得要取模,不然会爆.然后,再用二维前缀和统计各种情况下组合数是k的倍数的方案数.询问时直接O(1)输出即可. #include ...
- 【题解】NOIP2016提高组 复赛
[题解]NOIP2016提高组 复赛 传送门: 玩具谜题 \(\text{[P1563]}\) 天天爱跑步 \(\text{[P1600]}\) 换教室 \(\text{[P1850]}\) 组合数问 ...
- 【题解】NOIP2016 提高组 简要题解
[题解]NOIP2016 提高组 简要题解 玩具迷题(送分) 用异或实现 //@winlere #include<iostream> #include<cstdio> #inc ...
- NOIP2016提高组解题报告
NOIP2016提高组解题报告 更正:NOIP day1 T2天天爱跑步 解题思路见代码. NOIP2016代码整合
- [日记&做题记录]-Noip2016提高组复赛 倒数十天
写这篇博客的时候有点激动 为了让自己不颓 还是写写日记 存存模板 Nov.8 2016 今天早上买了两个蛋挞 吃了一个 然后就做数论(前天晚上还是想放弃数论 但是昨天被数论虐了 woc noip模拟赛 ...
- 【NOIP2016提高组】 Day2 T1 组合数问题
题目传送门:https://www.luogu.org/problemnew/show/P2822 ↓题目大意↓ 数据的极限范围:n,m≤2000,k≤21,数据组数≤ ...
- Noip2016 提高组 Day2 T1 组合数问题
题目描述 组合数表示的是从n个物品中选出m个物品的方案数.举个例子,从(1,2,3) 三个物品中选择两个物品可以有(1,2),(1,3),(2,3)这三种选择方法.根据组合数的定 义,我们可以给出计算 ...
- NOIP2016提高组初赛(C++语言)试题 个人的胡乱分析 Part 2.
洛谷秋令营day1模拟赛原地爆炸,心态崩了.于是打算写一下初赛题放松一下. 上次胡乱分析到了选择题,这次我想说说后面的题. 问题求解 T1.有一个1x8的方格图形,黑白两色填涂每个方格,两个黑格并不能 ...
随机推荐
- 多线程伪共享FalseSharing
1. 伪共享产生: 在SMP架构的系统中,每个CPU核心都有自己的cache,当多个线程在不同的核心上,并且某线程修改了在同一个cache line中的数据时,由于cache一致性原则,其他核心cac ...
- Linux内核通知链分析【转】
转自:http://www.cnblogs.com/jason-lu/articles/2807758.html Linux内核通知链分析 1. 引言 Linux是单内核架构(monolithic k ...
- fbx sdk
autodesk fbx review autodesk fbx review http://www.greenxf.com/soft/169025.html autodesk fbx review( ...
- c++ 引用的分析
在一般教材里面,我们会说引用是变量的别名,另外在 c++ primer 5里面说到引用的时候,说引用不是对象,不能对它进行取地址.但是我们来看看下面代码的分析: #include <iostre ...
- supervisor error: <class 'socket.error'>, [Errno 110]
supervisorctr status报错 error: <class 'socket.error'>, [Errno 110] Connection timed out: file: ...
- 使用JMX工具远程监控tomcat配置
使用JMX工具远程监控tomcat,在tomcat启动时添加配置参数: -Dcom.sun.management.jmxremote -Dcom.sun.management.jmxremote.po ...
- linux命令(18):chmod命令
1. 命令格式: chmod [-cfvR] [--help] [--version] mode file 2. 命令功能: 用于改变文件或目录的访问权限,用它控制文件或目录的访问权限. 3. 命令参 ...
- win10网速慢
升级到win10之后发现网速特别慢,搜了下,网上的解决办法果然好使,按照如下操作即可. 返回桌面,按WIN+R键组合,运行gpedit.msc 打开组策略 依次展开管理模板->网络->Qo ...
- mysql-备份及关联python
阅读目录 IDE工具介绍 MySQL数据库备份 mysqldump实现逻辑备份 回复逻辑备份 备份/恢复案例 自动化备份 表的导出和导入 数据库迁移 pymysql模块 一 链接.执行sql.关闭(游 ...
- 四:ZooKeeper的集群,伪集群,单机的搭建
一:ZooKeeper服务安装包下载 第一步:打开zooKeeper官网