E. Famil Door and Roads

题目连接:

http://www.codeforces.com/contest/629/problem/E

Description

Famil Door’s City map looks like a tree (undirected connected acyclic graph) so other people call it Treeland. There are n intersections in the city connected by n - 1 bidirectional roads.

There are m friends of Famil Door living in the city. The i-th friend lives at the intersection ui and works at the intersection vi. Everyone in the city is unhappy because there is exactly one simple path between their home and work.

Famil Door plans to construct exactly one new road and he will randomly choose one among n·(n - 1) / 2 possibilities. Note, that he may even build a new road between two cities that are already connected by one.

He knows, that each of his friends will become happy, if after Famil Door constructs a new road there is a path from this friend home to work and back that doesn't visit the same road twice. Formally, there is a simple cycle containing both ui and vi.

Moreover, if the friend becomes happy, his pleasure is equal to the length of such path (it's easy to see that it's unique). For each of his friends Famil Door wants to know his expected pleasure, that is the expected length of the cycle containing both ui and vi if we consider only cases when such a cycle exists.

Input

The first line of the input contains integers n and m (2 ≤ n,  m ≤ 100 000) — the number of the intersections in the Treeland and the number of Famil Door's friends.

Then follow n - 1 lines describing bidirectional roads. Each of them contains two integers ai and bi (1 ≤ ai, bi ≤ n) — the indices of intersections connected by the i-th road.

Last m lines of the input describe Famil Door's friends. The i-th of these lines contain two integers ui and vi (1 ≤ ui, vi ≤ n, ui ≠ vi) — indices of intersections where the i-th friend lives and works.

Output

For each friend you should print the expected value of pleasure if he will be happy. Your answer will be considered correct if its absolute or relative error does not exceed 10 - 6.

Namely: let's assume that your answer is a, and the answer of the jury is b. The checker program will consider your answer correct, if .

Sample Input

4 3

2 4

4 1

3 2

3 1

2 3

4 1

Sample Output

4.00000000

3.00000000

3.00000000

Hint

题意

给一棵树,然后有Q次询问,每次询问给你两个点,问你加一条边之后,这两个点所在的简单环的期望长度是多少

简单环即这两个点在一个环上,这个环是没有重边的。

题解:

两个点u,v,只有3种情况

1.lca(u,v)=v;

这种情况的答案等于v上面的点的距离和除以v上面的点数量+u下面的点距离和除以u下面的点数。

2.lca(u,v)=u;

同上

3.lca(u,v)!=u!=v

这种情况的答案等于v下面的点的距离和除以v下面的点的数量+u下面的点的距离和除以v下面的点的数量。

下面的点的距离和,这个东西,用树形dp去解决就好了。

至于上面的点的距离和,假设lca(u,v)=v这种情况,那么sumUp[v]=sumAll[v]-sumDown[z]-sz[z],z点是v到u的那条路径上的v的儿子。

sumAll[i]是所有点到i点的距离和,sz是这棵子树的大小,sumDown[i]是子树的距离和。

然后这道题就结束了。

代码

#include<bits/stdc++.h>
using namespace std;
const int maxn = 1e5+7;
const int maxm = 20;
int n,m,sz[maxn],lca[maxn][maxm],deep[maxn];
long long sumDown[maxn],sumAll[maxn];
vector<int> E[maxn];
void dfs(int x,int p)
{
sz[x]=1;
sumDown[x]=0;
for(int i=0;i<E[x].size();i++)
{
int v = E[x][i];
if(v==p)continue;
deep[v]=deep[x]+1;
lca[v][0]=x;
for(int j=1;j<maxm;j++)
{
int fa = lca[v][j-1];
if(fa==0)continue;
lca[v][j]=lca[fa][j-1];
}
dfs(v,x);
sumDown[x]+=sumDown[v]+sz[v];
sz[x]+=sz[v];
}
}
void dfs2(int x,int p)
{
for(int i=0;i<E[x].size();i++)
{
int v = E[x][i];
if(v==p)continue;
sumAll[v]=sumAll[x]+n-2*sz[v];
dfs2(v,x);
}
}
void build()
{
dfs(1,-1);
sumAll[1]=sumDown[1];
dfs2(1,-1);
}
int up(int x,int d)
{
for(int i=maxm-1;i>=0;i--)
{
if(d<(1<<i))continue;
x=lca[x][i];
d-=(1<<i);
}
return x;
}
int Lca(int x,int y)
{
if(deep[x]>deep[y])swap(x,y);
y=up(y,deep[y]-deep[x]);
if(x==y)return x;
for(int i=maxm-1;i>=0;i--)
{
if(lca[x][i]!=lca[y][i])
x=lca[x][i],y=lca[y][i];
}
return lca[x][0];
}
void query()
{
int x,y;
scanf("%d%d",&x,&y);
int v = Lca(x,y);
double ans = deep[x]+deep[y]-2*deep[v]+1;
if(x==v)
{
int z = up(y,deep[y]-deep[x]-1);
ans+=(double)(sumAll[x]-sumDown[z]-sz[z])/(n-sz[z]);
}
else
ans+=(double)sumDown[x]/sz[x];
if(y==v)
{
int z = up(x,deep[x]-deep[y]-1);
ans+=(double)(sumAll[y]-sumDown[z]-sz[z])/(n-sz[z]);
}
else
ans+=(double)sumDown[y]/sz[y];
printf("%.12f\n",ans);
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=1;i<n;i++)
{
int x,y;scanf("%d%d",&x,&y);
E[x].push_back(y);
E[y].push_back(x);
}
build();
while(m--)query();
}

Codeforces Round #343 (Div. 2) E. Famil Door and Roads lca 树形dp的更多相关文章

  1. Codeforces Round #343 (Div. 2) E. Famil Door and Roads

    题目链接: http://www.codeforces.com/contest/629/problem/E 题解: 树形dp. siz[x]为x这颗子树的节点个数(包括x自己) dep[x]表示x这个 ...

  2. Codeforces Round #343 (Div. 2) E. Famil Door and Roads (树形dp,lca)

    Famil Door's City map looks like a tree (undirected connected acyclic graph) so other people call it ...

  3. Codeforces Round #343 (Div. 2) C. Famil Door and Brackets dp

    C. Famil Door and Brackets 题目连接: http://www.codeforces.com/contest/629/problem/C Description As Fami ...

  4. Codeforces Round #343 (Div. 2) C. Famil Door and Brackets

    题目链接: http://codeforces.com/contest/629/problem/C 题意: 长度为n的括号,已经知道的部分的长度为m,现在其前面和后面补充‘(',或')',使得其长度为 ...

  5. Codeforces Round #343 (Div. 2) D - Babaei and Birthday Cake 线段树+DP

    题意:做蛋糕,给出N个半径,和高的圆柱,要求后面的体积比前面大的可以堆在前一个的上面,求最大的体积和. 思路:首先离散化蛋糕体积,以蛋糕数量建树建树,每个节点维护最大值,也就是假如节点i放在最上层情况 ...

  6. Codeforces Round #551 (Div. 2) D. Serval and Rooted Tree (树形dp)

    题目链接 题意:给你一个有根树,假设有k个叶子节点,你可以给每个叶子节点编个号,要求编号不重复且在1-k以内.然后根据节点的max,minmax,minmax,min信息更新节点的值,要求根节点的值最 ...

  7. Codeforces Round #343 (Div. 2)

    居然补完了 组合 A - Far Relative’s Birthday Cake import java.util.*; import java.io.*; public class Main { ...

  8. Codeforces Round #343 (Div. 2) B. Far Relative’s Problem 暴力

    B. Far Relative's Problem 题目连接: http://www.codeforces.com/contest/629/problem/B Description Famil Do ...

  9. Codeforces Round #343 (Div. 2) B

    B. Far Relative’s Problem time limit per test 2 seconds memory limit per test 256 megabytes input st ...

随机推荐

  1. rabbitmq之配置文件详解(二)

    前言 前面介绍了erlang环境的安装和rabbitmq环境安装,接下来对rabbitmq详细配置: 设置配置文件 rabbitmq的系统配置文件一般是rabbitmq.conf,可以登录后台查看它的 ...

  2. centos_7.1.1503_src_6

    http://vault.centos.org/7.1.1503/os/Source/SPackages/ perl-Test-MockObject-1.20120301-3.el7.src.rpm ...

  3. python爬虫面试总结

    1.爬虫有哪些模块? 答: URL管理模块:维护已经爬取的URL集合和未爬取的URL集合,并提供获取新URL链接的接口 HTML下载模块:从URL管理器中获取未爬取的URL链接并下载HTML网页 HT ...

  4. 【bzoj3545】peaks

    离线一下,动态开点+线段树合并,然后权值线段树上询问kth即可. #include<bits/stdc++.h> ; *; using namespace std; ; inline in ...

  5. C++中多线程与Singleton的那些事儿

    前言 前段时间在网上看到了个的面试题,大概意思是如何在不使用锁和C++11的情况下,用C++实现线程安全的Singleton. 看到这个题目后,第一个想法就是用Scott Meyer在<Effe ...

  6. tcpcopy 流量复制

    依赖 libpcap 线上服务器安装 https://github.com/session-replay-tools/tcpcopy.git 下载后解压 #--pcap-capture 默认raw s ...

  7. 全国省市区数据SQL - 省市区

    转载:https://www.cnblogs.com/flywind/p/6036801.html

  8. 【Android开发日记】之基础篇(二)——Android的动画效果

          什么是动画,动画的本质是通过连续不断地显示若干图像来产生“动”起来的效果.比如说一个移动的动画,就是在一定的时间段内,以恰当的速率(起码要12帧/秒以上,才会让人产生动起来的错觉)每隔若干 ...

  9. springmvc3 拦截器,过滤ajax请求,判断用户登录,拦截规则设置

    web.xml设置:(/拦截所有请求) <servlet> <servlet-name>dispatcher</servlet-name> <servlet- ...

  10. Asp.net 模板下载和导入到DataTable中

    HTML页面: <tr> <td colspan=" style="text-align: left; border: 1px;"> <as ...