E. Famil Door and Roads

题目连接:

http://www.codeforces.com/contest/629/problem/E

Description

Famil Door’s City map looks like a tree (undirected connected acyclic graph) so other people call it Treeland. There are n intersections in the city connected by n - 1 bidirectional roads.

There are m friends of Famil Door living in the city. The i-th friend lives at the intersection ui and works at the intersection vi. Everyone in the city is unhappy because there is exactly one simple path between their home and work.

Famil Door plans to construct exactly one new road and he will randomly choose one among n·(n - 1) / 2 possibilities. Note, that he may even build a new road between two cities that are already connected by one.

He knows, that each of his friends will become happy, if after Famil Door constructs a new road there is a path from this friend home to work and back that doesn't visit the same road twice. Formally, there is a simple cycle containing both ui and vi.

Moreover, if the friend becomes happy, his pleasure is equal to the length of such path (it's easy to see that it's unique). For each of his friends Famil Door wants to know his expected pleasure, that is the expected length of the cycle containing both ui and vi if we consider only cases when such a cycle exists.

Input

The first line of the input contains integers n and m (2 ≤ n,  m ≤ 100 000) — the number of the intersections in the Treeland and the number of Famil Door's friends.

Then follow n - 1 lines describing bidirectional roads. Each of them contains two integers ai and bi (1 ≤ ai, bi ≤ n) — the indices of intersections connected by the i-th road.

Last m lines of the input describe Famil Door's friends. The i-th of these lines contain two integers ui and vi (1 ≤ ui, vi ≤ n, ui ≠ vi) — indices of intersections where the i-th friend lives and works.

Output

For each friend you should print the expected value of pleasure if he will be happy. Your answer will be considered correct if its absolute or relative error does not exceed 10 - 6.

Namely: let's assume that your answer is a, and the answer of the jury is b. The checker program will consider your answer correct, if .

Sample Input

4 3

2 4

4 1

3 2

3 1

2 3

4 1

Sample Output

4.00000000

3.00000000

3.00000000

Hint

题意

给一棵树,然后有Q次询问,每次询问给你两个点,问你加一条边之后,这两个点所在的简单环的期望长度是多少

简单环即这两个点在一个环上,这个环是没有重边的。

题解:

两个点u,v,只有3种情况

1.lca(u,v)=v;

这种情况的答案等于v上面的点的距离和除以v上面的点数量+u下面的点距离和除以u下面的点数。

2.lca(u,v)=u;

同上

3.lca(u,v)!=u!=v

这种情况的答案等于v下面的点的距离和除以v下面的点的数量+u下面的点的距离和除以v下面的点的数量。

下面的点的距离和,这个东西,用树形dp去解决就好了。

至于上面的点的距离和,假设lca(u,v)=v这种情况,那么sumUp[v]=sumAll[v]-sumDown[z]-sz[z],z点是v到u的那条路径上的v的儿子。

sumAll[i]是所有点到i点的距离和,sz是这棵子树的大小,sumDown[i]是子树的距离和。

然后这道题就结束了。

代码

#include<bits/stdc++.h>
using namespace std;
const int maxn = 1e5+7;
const int maxm = 20;
int n,m,sz[maxn],lca[maxn][maxm],deep[maxn];
long long sumDown[maxn],sumAll[maxn];
vector<int> E[maxn];
void dfs(int x,int p)
{
sz[x]=1;
sumDown[x]=0;
for(int i=0;i<E[x].size();i++)
{
int v = E[x][i];
if(v==p)continue;
deep[v]=deep[x]+1;
lca[v][0]=x;
for(int j=1;j<maxm;j++)
{
int fa = lca[v][j-1];
if(fa==0)continue;
lca[v][j]=lca[fa][j-1];
}
dfs(v,x);
sumDown[x]+=sumDown[v]+sz[v];
sz[x]+=sz[v];
}
}
void dfs2(int x,int p)
{
for(int i=0;i<E[x].size();i++)
{
int v = E[x][i];
if(v==p)continue;
sumAll[v]=sumAll[x]+n-2*sz[v];
dfs2(v,x);
}
}
void build()
{
dfs(1,-1);
sumAll[1]=sumDown[1];
dfs2(1,-1);
}
int up(int x,int d)
{
for(int i=maxm-1;i>=0;i--)
{
if(d<(1<<i))continue;
x=lca[x][i];
d-=(1<<i);
}
return x;
}
int Lca(int x,int y)
{
if(deep[x]>deep[y])swap(x,y);
y=up(y,deep[y]-deep[x]);
if(x==y)return x;
for(int i=maxm-1;i>=0;i--)
{
if(lca[x][i]!=lca[y][i])
x=lca[x][i],y=lca[y][i];
}
return lca[x][0];
}
void query()
{
int x,y;
scanf("%d%d",&x,&y);
int v = Lca(x,y);
double ans = deep[x]+deep[y]-2*deep[v]+1;
if(x==v)
{
int z = up(y,deep[y]-deep[x]-1);
ans+=(double)(sumAll[x]-sumDown[z]-sz[z])/(n-sz[z]);
}
else
ans+=(double)sumDown[x]/sz[x];
if(y==v)
{
int z = up(x,deep[x]-deep[y]-1);
ans+=(double)(sumAll[y]-sumDown[z]-sz[z])/(n-sz[z]);
}
else
ans+=(double)sumDown[y]/sz[y];
printf("%.12f\n",ans);
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=1;i<n;i++)
{
int x,y;scanf("%d%d",&x,&y);
E[x].push_back(y);
E[y].push_back(x);
}
build();
while(m--)query();
}

Codeforces Round #343 (Div. 2) E. Famil Door and Roads lca 树形dp的更多相关文章

  1. Codeforces Round #343 (Div. 2) E. Famil Door and Roads

    题目链接: http://www.codeforces.com/contest/629/problem/E 题解: 树形dp. siz[x]为x这颗子树的节点个数(包括x自己) dep[x]表示x这个 ...

  2. Codeforces Round #343 (Div. 2) E. Famil Door and Roads (树形dp,lca)

    Famil Door's City map looks like a tree (undirected connected acyclic graph) so other people call it ...

  3. Codeforces Round #343 (Div. 2) C. Famil Door and Brackets dp

    C. Famil Door and Brackets 题目连接: http://www.codeforces.com/contest/629/problem/C Description As Fami ...

  4. Codeforces Round #343 (Div. 2) C. Famil Door and Brackets

    题目链接: http://codeforces.com/contest/629/problem/C 题意: 长度为n的括号,已经知道的部分的长度为m,现在其前面和后面补充‘(',或')',使得其长度为 ...

  5. Codeforces Round #343 (Div. 2) D - Babaei and Birthday Cake 线段树+DP

    题意:做蛋糕,给出N个半径,和高的圆柱,要求后面的体积比前面大的可以堆在前一个的上面,求最大的体积和. 思路:首先离散化蛋糕体积,以蛋糕数量建树建树,每个节点维护最大值,也就是假如节点i放在最上层情况 ...

  6. Codeforces Round #551 (Div. 2) D. Serval and Rooted Tree (树形dp)

    题目链接 题意:给你一个有根树,假设有k个叶子节点,你可以给每个叶子节点编个号,要求编号不重复且在1-k以内.然后根据节点的max,minmax,minmax,min信息更新节点的值,要求根节点的值最 ...

  7. Codeforces Round #343 (Div. 2)

    居然补完了 组合 A - Far Relative’s Birthday Cake import java.util.*; import java.io.*; public class Main { ...

  8. Codeforces Round #343 (Div. 2) B. Far Relative’s Problem 暴力

    B. Far Relative's Problem 题目连接: http://www.codeforces.com/contest/629/problem/B Description Famil Do ...

  9. Codeforces Round #343 (Div. 2) B

    B. Far Relative’s Problem time limit per test 2 seconds memory limit per test 256 megabytes input st ...

随机推荐

  1. Caffe学习笔记2

    Caffe学习笔记2-用一个预训练模型提取特征 本文为原创作品,未经本人同意,禁止转载,禁止用于商业用途!本人对博客使用拥有最终解释权 欢迎关注我的博客:http://blog.csdn.net/hi ...

  2. Python大牛开小灶,一对一问答

    CSDN知识小饭桌 大牛开小灶 小范围,高质量,在线交流QA 参与嘉宾   知识库特邀编辑伊海波,滴滴出行工程师,曾任龙图龙图游戏数据分析部技术负责人.CSDN博客专家,资深Python/Golang ...

  3. windows访问linux共享文件夹

    1.windows的网上邻居,是通过smb协议来共享信息的,如果需要给访问linux上的共享目录被windows访问到,需要linux有smb协议 sudo apt-get install samba ...

  4. 查看linux 下进程运行时间(转)

    原文地址:http://blog.csdn.net/tspangle/article/details/11731317 可通过ps 来查看,通过参数 -o 来查看 如: ps -eo pid,tty, ...

  5. linux命令(27):cat命令

    实例一:把 log2012.log 的文件内容加上行号后输入 log2013.log 这个文件里 cat -n log2012.log log2013.log 实例二:把 log2012.log 和 ...

  6. linux命令(10):ps命令

    1.查看mysql进程数: ps -ef | grep "mysql" | grep -v "grep" | wc –l 2.监控CPU状态:ps –au 3. ...

  7. initerrlog: 无法打开错误日志文件 'D:\Program Files\Microsoft SQL Server\MSSQL10_50.MSSQLSERVER\MSSQL\Log 解决办法

    initerrlog: 无法打开错误日志文件 'D:\Program Files\Microsoft SQL Server\MSSQL10_50.MSSQLSERVER\MSSQL\Log 1. 设置 ...

  8. JS作用域和ASP(vbs)作用域比较

    一.js作用域,先上图: 以上代码执行的效果是,依次弹出 undefined, undefined, a, a,为什么是这样的结果啦?因为JS的作用域为链式作用域. 作用域链: 用VAR声明一个变量时 ...

  9. IOS中div contenteditable=true无法输入 fastclick.js在点击一个可输入的div时,ios无法正常唤起输入法键盘

    原文地址: https://blog.csdn.net/u010377383/article/details/79838562 前言 为了提升移动端click的响应速度,使用了fastclick.js ...

  10. ELK系列--justniffer0.5.12安装报错解决方法

    现象: justniffer的0.5.12(安装后显示0.5.13版本)安装过程中需要升级boost至1.46以上版本,同时在make时会出现如下报错: /opt/Python-2.6.6/Pytho ...