洛谷题目链接:[SDOI2008]仪仗队

题目描述

作为体育委员,C君负责这次运动会仪仗队的训练。仪仗队是由学生组成的N * N的方阵,为了保证队伍在行进中整齐划一,C君会跟在仪仗队的左后方,根据其视线所及的学生人数来判断队伍是否整齐(如下图)。



现在,C君希望你告诉他队伍整齐时能看到的学生人数。

输入输出格式

输入格式:

共一个数N

输出格式:

共一个数,即C君应看到的学生人数。

输入输出样例

输入样例#1:

4

输出样例#1:

9

说明

【数据规模和约定】

对于 100% 的数据,1 ≤ N ≤ 40000


一句话题意: 一个\(n*n\)的矩阵, 问从左下角的位置能看到多少点(在前面的会把在后面的挡住).

题解: 可以把最左下角的点当做坐标原点建系,这样一个点到原点的直线的斜率就是\(y/x\),如果要能看见这个点,那么这个点就满足条件\(gcd(x,y)=1\)(即\(x,y\)互质(因为这样保证了他们中间没有点).如果看不懂这一步可以先做一下兔八哥与猎人

那么问题就转化成了求$$\sum{n-1}_{i=1}\sum{n-1}{j=1}(gcd(i,j)=1)$$,因为这个正方形可以从中间对称看过去,也就是只考虑半边的情况,然后将答案乘二加一(对称轴上有一个).那么就可以将上面那个式子变一下形$$\sum^{n-1}{i-1}\varphi(i)$$

那么直接求一遍欧拉函数就可以了.

另外注意一下,因为是直接特判的对称轴的情况,所以当\(n=1\)的时候也要特判.

#include<bits/stdc++.h>
using namespace std;
const int N=40000+5; int n, prime[N], size = 0, phi[N], ans = 0;
bool is_prime[N]; void get_phi(int lim){
memset(is_prime,1,sizeof(is_prime));
is_prime[0] = is_prime[1] = false;
phi[1] = 1;
for(int i=2;i<=lim;i++){
if(is_prime[i])
prime[++size] = i, phi[i] = i-1;
for(int j=1;j<=size && i*prime[j] <= lim;j++){
is_prime[i*prime[j]] = 0;
if(i % prime[j] == 0){phi[i*prime[j]] = phi[i]*prime[j];break;}
else phi[i*prime[j]] = phi[i]*(prime[j]-1);
}
}
} int main(){
cin >> n; get_phi(n);
if(n == 0 || n == 1) printf("0\n"), exit(0);
for(int i=1;i<n;i++) ans += phi[i];
printf("%d\n",ans*2+1);
return 0;
}

[SDOI2008]仪仗队 (洛谷P2158)的更多相关文章

  1. 洛谷 P2158 [SDOI2008]仪仗队 && 洛谷 P1447 [NOI2010]能量采集

    https://www.luogu.org/problemnew/show/P2158 以人所在位置为(0,0)建立坐标系, 显然除了(0,1)和(1,0)外,可以只在坐标(x,y)的gcd(x,y) ...

  2. 洛谷 P2158 [SDOI2008]仪仗队 解题报告

    P2158 [SDOI2008]仪仗队 题目描述 作为体育委员,C君负责这次运动会仪仗队的训练.仪仗队是由学生组成的N * N的方阵,为了保证队伍在行进中整齐划一,C君会跟在仪仗队的左后方,根据其视线 ...

  3. 洛谷——P2158 [SDOI2008]仪仗队

    P2158 [SDOI2008]仪仗队 找规律大水题嘛,如果你做过P1170 兔八哥与猎人 这题得到的规律是$a,b,c,d$,若$gcd(a-b,c-d)==1$ 那么$a,b$就能看到$c,d$ ...

  4. 题解 洛谷P2158 【[SDOI2008]仪仗队】

    本文搬自本人洛谷博客 题目 本文进行了一定的更新 优化了 Markdown 中 Latex 语句的运用,加强了可读性 补充了"我们仍不曾知晓得 消失的 性质5 ",加强了推导的严谨 ...

  5. 洛谷P2158 [SDOI2008]仪仗队

    题目描述 作为体育委员,C君负责这次运动会仪仗队的训练.仪仗队是由学生组成的N * N的方阵,为了保证队伍在行进中整齐划一,C君会跟在仪仗队的左后方,根据其视线所及的学生人数来判断队伍是否整齐(如下图 ...

  6. 洛谷P2158 [SDOI2008]仪仗队 欧拉函数的应用

    https://www.luogu.org/problem/P2158 #include<bits/stdc++.h> #define int long long using namesp ...

  7. 洛谷 P2158 [SDOI2008]仪仗队

    题意简述 给定一个n,求gcd(x, y) = 1(x, y <= n)的(x, y)个数 题解思路 欧拉函数, 则gcd(x, y) = 1(x <= y <= n)的个数 ans ...

  8. 洛谷 - P2158 - 仪仗队 - 欧拉函数

    https://www.luogu.org/problemnew/show/P2158 好像以前有个妹子收割铲也是欧拉函数. 因为格点直线上的点,dx与dy的gcd相同,画个图就觉得是欧拉函数.但是要 ...

  9. 欧拉筛,线性筛,洛谷P2158仪仗队

    题目 首先我们先把题目分析一下. emmmm,这应该是一个找规律,应该可以打表,然后我们再分析一下图片,发现如果这个点可以被看到,那它的横坐标和纵坐标应该互质,而互质的条件就是它的横坐标和纵坐标的最大 ...

随机推荐

  1. 福大软工1816:Alpha(7/10)

    Alpha 冲刺 (7/10) 队名:Jarvis For Chat 组长博客链接 本次作业链接 团队部分 团队燃尽图 工作情况汇报 张扬(组长) 过去两天完成了哪些任务: 文字/口头描述: 1.完成 ...

  2. Java中I/O流之数据流

    Java 中的数据流: 对于某问题:将一个 long 类型的数据写到文件中,有办法吗?    转字符串 → 通过 getbytes() 写进去,费劲,而且在此过程中 long 类型的数需要不断地转换. ...

  3. 敏捷冲刺Day1

    前言: 之前的各种对教务系统的分析,再加上我们两三天的讨论和一个小时的站立会议,我们做出最终的决定.--我们决定换个项目主题,将原来的教务辅助系统换成现在的校园帮帮帮服务,并在之后会将完成后的计划书附 ...

  4. 理解BitSet

    先来看几道面试题: 1.统计40亿个数据中没有出现的数据,将40亿个不同数据进行排序. 2.现在有1千万个随机数,随机数的范围在1到1亿之间,要求写出一种算法,将1到1亿之间没有在随机数中的数求出来. ...

  5. phpcms找不到模板、空白模板的解决办法

    有时候会出现这个问题,尤其是在调试模板的过程中,不知道别的朋友的操作习惯.我的习惯是,先保留一份原始的模板.比如: index原版.html. 以便对比之用.但是呢,这样,往往会造成 找不到模板的情况 ...

  6. linux 相关的问题

    1,查找当前目录下的文件名,并重定向到文件t中 ls > t mac 下快速补全目录名快捷键tab

  7. Java内存分配及垃圾回收机制

    Java内存区域 1.内存区域 jvm运行时数据区域 程序计数器 Java虚拟机栈 本地方法栈 方法区 Java堆 大图 2.概念解释 程序计数器   线程私有的一块很小的内存空间,它是当前线程所执行 ...

  8. WPF通过NPIO读写Excel操作

    自已摸索实现了对excel简单的上传和下载并做了一个封装类,下面分享一下. 先去官网:http://npoi.codeplex.com/下载需要引入dll(可以选择.net2.0或者.net4.0的d ...

  9. set类型没有单独取值功能 通过循环取值

    set类型没有单独取值功能 通过循环取值

  10. BZOJ 3040最短路

    题目描述 给定一个 NN 个点, MM 条有向边的带权图,请你计算从 SS 出发,到每个点的距离. 数据保证你能从 SS 出发到任意点. 输入输出格式 输入格式: 第一行两个整数 NN . MM ,表 ...