Codeforces Round #393 (Div. 2) (8VC Venture Cup 2017 - Final Round Div. 2 Edition)A 水 B 二分 C并查集
2 seconds
256 megabytes
standard input
standard output
Petr wants to make a calendar for current month. For this purpose he draws a table in which columns correspond to weeks (a week is seven consequent days from Monday to Sunday), rows correspond to weekdays, and cells contain dates. For example, a calendar for January 2017 should look like on the picture:

Petr wants to know how many columns his table should have given the month and the weekday of the first date of that month? Assume that the year is non-leap.
The only line contain two integers m and d (1 ≤ m ≤ 12, 1 ≤ d ≤ 7) — the number of month (January is the first month, December is the twelfth) and the weekday of the first date of this month (1 is Monday, 7 is Sunday).
Print single integer: the number of columns the table should have.
1 7
6
1 1
5
11 6
5
The first example corresponds to the January 2017 shown on the picture in the statements.
In the second example 1-st January is Monday, so the whole month fits into 5 columns.
In the third example 1-st November is Saturday and 5 columns is enough.
题意:2017第m个月 当月第一天是星期d 问这个月的日历需要几列
题解:水
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <stack>
#include <queue>
#include <cmath>
#include <map>
#define ll __int64
#define mod 1000000007
#define dazhi 2147483647
using namespace std;
int m,d;
int main()
{
int ans=;
int exm;
scanf("%d %d",&m,&d);
if(m==||m==||m==||m==||m==||m==||m==)
exm=;
else
{
if(m==)
exm=;
else
exm=;
}
exm=exm-(-d+);
ans=ans+exm/;
if(exm%)
ans++;
cout<<ans<<endl;
return ;
}
1 second
256 megabytes
standard input
standard output
n hobbits are planning to spend the night at Frodo's house. Frodo has n beds standing in a row and m pillows (n ≤ m). Each hobbit needs a bed and at least one pillow to sleep, however, everyone wants as many pillows as possible. Of course, it's not always possible to share pillows equally, but any hobbit gets hurt if he has at least two pillows less than some of his neighbors have.
Frodo will sleep on the k-th bed in the row. What is the maximum number of pillows he can have so that every hobbit has at least one pillow, every pillow is given to some hobbit and no one is hurt?
The only line contain three integers n, m and k (1 ≤ n ≤ m ≤ 109, 1 ≤ k ≤ n) — the number of hobbits, the number of pillows and the number of Frodo's bed.
Print single integer — the maximum number of pillows Frodo can have so that no one is hurt.
4 6 2
2
3 10 3
4
3 6 1
3
In the first example Frodo can have at most two pillows. In this case, he can give two pillows to the hobbit on the first bed, and one pillow to each of the hobbits on the third and the fourth beds.
In the second example Frodo can take at most four pillows, giving three pillows to each of the others.
In the third example Frodo can take three pillows, giving two pillows to the hobbit in the middle and one pillow to the hobbit on the third bed.
题意:n个床 m个垫子 Frodo 在第k个床上 要求相邻的两个床的相差的垫子的个数不能超过1 每个床上最少要有一个垫子 问 满足情况下 Frodo的床上最多有多少垫子
题解:二分Frodo床上的垫子数量 check 是否满足 很容想到以Frodo所在的床为中点向左向右的垫子数量都是递减的
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <stack>
#include <queue>
#include <cmath>
#include <map>
#define ll __int64
#define mod 1000000007
#define dazhi 2147483647
using namespace std;
ll n,m,k;
ll fun(ll x)
{
x=x-;
ll exm1,exm2,exm3;
exm1=(+x)*x/;
if((x-k)<=)
exm2=;
else{
if((x-k)==)
exm2=;
else
exm2=(+x-k)*(x-k)/;
}
if((x-(n-k+))<=)
exm3=;
else{
if((x-(n-k+))==)
exm3=;
else
exm3=(+(x-(n-k+)))*(x-(n-k+))/;
}
return n+exm1-exm2+exm1-exm3-x;
}
int main()
{
scanf("%I64d %I64d %I64d",&n,&m,&k);
ll l=,r=1e9,mid;
while(l<r)
{
mid=(l+r)>>;
if(fun(mid)<=m)
l=mid+;
else
r=mid;
}
if(fun(l)<=m)
cout<<l<<endl;
else
cout<<l-<<endl;
return ;
}
2 seconds
256 megabytes
standard input
standard output
Pavel cooks barbecue. There are n skewers, they lay on a brazier in a row, each on one of n positions. Pavel wants each skewer to be cooked some time in every of n positions in two directions: in the one it was directed originally and in the reversed direction.
Pavel has a plan: a permutation p and a sequence b1, b2, ..., bn, consisting of zeros and ones. Each second Pavel move skewer on position i to position pi, and if bi equals 1 then he reverses it. So he hope that every skewer will visit every position in both directions.
Unfortunately, not every pair of permutation p and sequence b suits Pavel. What is the minimum total number of elements in the given permutation p and the given sequence b he needs to change so that every skewer will visit each of 2n placements? Note that after changing the permutation should remain a permutation as well.
There is no problem for Pavel, if some skewer visits some of the placements several times before he ends to cook. In other words, a permutation p and a sequence b suit him if there is an integer k (k ≥ 2n), so that after k seconds each skewer visits each of the 2nplacements.
It can be shown that some suitable pair of permutation p and sequence b exists for any n.
The first line contain the integer n (1 ≤ n ≤ 2·105) — the number of skewers.
The second line contains a sequence of integers p1, p2, ..., pn (1 ≤ pi ≤ n) — the permutation, according to which Pavel wants to move the skewers.
The third line contains a sequence b1, b2, ..., bn consisting of zeros and ones, according to which Pavel wants to reverse the skewers.
Print single integer — the minimum total number of elements in the given permutation p and the given sequence b he needs to change so that every skewer will visit each of 2n placements.
4
4 3 2 1
0 1 1 1
2
3
2 3 1
0 0 0
1
In the first example Pavel can change the permutation to 4, 3, 1, 2.
In the second example Pavel can change any element of b to 1.
题意:Pavel有n个地点烤肉,给你个数组p,p[i]代表可以从第i个位置到第p[i]个位置,p数组为n的一个全排列,又有个数组b,b[i]为1的时候,当Pavel走到第i个位置必须把这里的烤肉翻面。Pavel可以改变p数组或者b数组上的任意一个元素。问Pavel至少要改变多少个元素使得他可以把所有烤肉正反两面都烤一次。
题解:这题其实就是要先把路径改成一个环,因为只有成了环,Pavel才能走完两圈。由于p是全排列,因此这个路径本身就是一个或者多个环组合而成的。我们考虑n个环之间要合并,需要改动n条边,所以可以并查集或者dfs出环(联通块)的数量,这就是p数组需要改变的元素个数。然后我们考虑,假设最后合并成的环上,如果有奇数个1,Pavel就可以正反都烤到肉,如果是偶数个1就不行,因此判断下1的个数的奇偶性,就能得出b数组要改变多少次。需要特判环数为1的时候,p数组不需要改变。
#其实并不是很懂题意 看的别人的解释 orzzz#
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <stack>
#include <queue>
#include <cmath>
#include <map>
#define ll __int64
#define mod 1000000007
#define dazhi 2147483647
using namespace std;
int n;
int p[];
int b[];
int fa[];
int ans=;
int exm=;
int sum=;
int find(int root)
{
if(fa[root]!=root)
return fa[root]=find(fa[root]);
else
return root;
}
void uni(int a,int b)
{
int aa,bb;
aa=find(a);
bb=find(b);
if(aa!=bb){
fa[aa]=bb;
sum--;
}
}
int main()
{
scanf("%d",&n);
for(int i=; i<=n; i++)
scanf("%d",&p[i]);
for(int i=; i<=n; i++)
{
scanf("%d",&b[i]);
if(b[i]==)
exm++;
}
sum=n;
for(int i=; i<=n; i++)
fa[i]=i;
for(int i=; i<=n; i++)
uni(p[i],i);
if(sum==) sum=;
if(exm%==)
sum++;
printf("%d\n",sum);
return ;
}
Codeforces Round #393 (Div. 2) (8VC Venture Cup 2017 - Final Round Div. 2 Edition)A 水 B 二分 C并查集的更多相关文章
- Codeforces Round #393 (Div. 2) (8VC Venture Cup 2017 - Final Round Div. 2 Edition) E - Nikita and stack 线段树好题
http://codeforces.com/contest/760/problem/E 题目大意:现在对栈有m个操作,但是顺序是乱的,现在每输入一个操作要求你输出当前的栈顶, 注意,已有操作要按它们的 ...
- Codeforces Round #393 (Div. 2) (8VC Venture Cup 2017 - Final Round Div. 2 Edition) D - Travel Card
D - Travel Card 思路:dp,类似于单调队列优化. 其实可以写的更简单... #include<bits/stdc++.h> #define LL long long #de ...
- 8VC Venture Cup 2017 - Elimination Round
传送门:http://codeforces.com/contest/755 A题题意是给你一个数字n,让你找到一个数字m,使得n*m+1为合数,范围比较小,直接线性筛出1e6的质数,然后暴力枚举一下就 ...
- 8VC Venture Cup 2017 - Elimination Round - C
题目链接:http://codeforces.com/contest/755/problem/C 题意:PolandBall 生活在一个森林模型的环境中,定义森林由若干树组成,定义树为K个点,K-1条 ...
- 8VC Venture Cup 2016 - Final Round (Div. 2 Edition) D. Factory Repairs 树状数组
D. Factory Repairs 题目连接: http://www.codeforces.com/contest/635/problem/D Description A factory produ ...
- 8VC Venture Cup 2016 - Final Round (Div. 2 Edition) C. XOR Equation 数学
C. XOR Equation 题目连接: http://www.codeforces.com/contest/635/problem/C Description Two positive integ ...
- 8VC Venture Cup 2016 - Final Round (Div. 2 Edition)B. sland Puzzle 水题
B. sland Puzzle 题目连接: http://www.codeforces.com/contest/635/problem/B Description A remote island ch ...
- 8VC Venture Cup 2016 - Final Round (Div. 2 Edition) A. Orchestra 水题
A. Orchestra 题目连接: http://www.codeforces.com/contest/635/problem/A Description Paul is at the orches ...
- 8VC Venture Cup 2016 - Final Round (Div. 2 Edition)
暴力 A - Orchestra import java.io.*; import java.util.*; public class Main { public static void main(S ...
随机推荐
- 珍珠 Median Weight Bead 977
描述 There are N beads which of the same shape and size, but with different weights. N is an odd numbe ...
- CTC (Connectionist Temporal Classification) 算法原理
(原创文章,转载请注明出处哦~) 简单介绍CTC算法 CTC是序列标注问题中的一种损失函数. 传统序列标注算法需要每一时刻输入与输出符号完全对齐.而CTC扩展了标签集合,添加空元素. 在使用扩展标签集 ...
- 2018科大讯飞AI营销算法大赛全面来袭,等你来战!
AI技术已成为推动营销迭代的重要驱动力.AI营销高速发展的同时,积累了海量的广告数据和用户数据.如何有效应用这些数据,是大数据技术落地营销领域的关键,也是检测智能营销平台竞争力的标准. 讯飞AI营销云 ...
- CryptoZombies学习笔记——Lesson4
第四课主要介绍payable函数相关. chapter1: payable修饰函数 以太坊允许同时调用函数和eth转账.msg.value显示发送到合约的以太币数,ether是内置整型数.如果函数没有 ...
- 《梦断代码Dreaming In Code》阅读笔记(三)
最后这几章感觉上更多是从软件完成整体上来讲的.比如说技术.方法等. 在我看来,其实一个团队一直坚持一种好的.先进的方法是不可少的.如果一个优秀的团队刚愎自用,只随着成员们喜好发展,那不能长久.比如说, ...
- iOS- UIPickerView餐厅点餐系统
在餐厅里的点餐系统的核心控件就是UIPickerView 今天晚上在整理以前的项目笔记时,特意把UIPickerView单独拿出来,做了一个简陋的点餐道具. 因为没有素材图片,所有大家将就看看吧 0. ...
- TCP系列16—重传—6、基础快速重传(Fast Retransmit)
一.快速重传介绍 按照TCP协议,RTO超时重传是一个非常重要的事件,当RTO超时的时候,TCP会同时通过两种方式非常谨慎的降低发送数据包的速率,一种是基于拥塞控制削减发送窗口的大小,另外一个是通过指 ...
- IIS7,IIS7.5 URL重写模块工具
URL 重写模块 2.0 提供基于规则的重写机制,可在 Web 服务器处理请求的 URL 之前对其进行更改,以及在向 HTTP 客户端提供响应内容之前修改响应内容. 注意:使用环境为IIS7.0(x6 ...
- HDU 2114 Calculate S(n)
http://acm.hdu.edu.cn/showproblem.php?pid=2114 Problem Description Calculate S(n). S(n)=13+23 +33 +. ...
- 【Redis】- 总结精讲
本文围绕以下几点进行阐述 1.为什么使用redis2.使用redis有什么缺点3.单线程的redis为什么这么快4.redis的数据类型,以及每种数据类型的使用场景5.redis的过期策略以及内存淘汰 ...